
InterTwine: Creating Interapplication Information Scent to
Support Coordinated Use of Software

Adam Fourney1 Ben Lafreniere1 Parmit Chilana2 Michael Terry1

1Cheriton School of Computer Science, 2Management Sciences
Univeristy of Waterloo, Waterloo, ON, Canada

{ afourney, bjlafren, pchilana, mterry }@uwaterloo.ca

ABSTRACT
Users often make continued and sustained use of online re-
sources to complement use of a desktop application. For ex-
ample, users may reference online tutorials to recall how to
perform a particular task. While often used in a coordinated
fashion, the browser and desktop application provide sepa-
rate, independent mechanisms for helping users find and re-
find task-relevant information. In this paper, we describe In-
terTwine, a system that links information in the web browser
with relevant elements in the desktop application to create in-
terapplication information scent. This explicit link produces
a shared interapplication history to assist in re-finding in-
formation in both applications. As an example, InterTwine
marks all menu items in the desktop application that are cur-
rently mentioned in the front-most web page. This paper
introduces the notion of interapplication information scent,
demonstrates the concept in InterTwine, and describes results
from a formative study suggesting the utility of the concept.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST 2014, October 5–8, 2014, Honolulu, HI, USA.
Copyright c© 2014 ACM 978-1-4503-3069-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2642918.2647420

Author Keywords
interapplication information scent; finding & re-finding

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
When using desktop software, users frequently rely on the
web to access tutorials, troubleshoot problems, or learn how
to use specific software features [5, 6]. As users gain ex-
perience with the application, they often continue to rely on
these external resources, learning where to retrieve relevant
task-specific information, rather than committing specific op-
erational details to memory [3, 14, 25]. In all cases, online
materials provide information that is useful for the success-
ful completion of a given task. This tightly coupled use of
web-based information with desktop software suggests that
it is worthwhile to consider these separate systems—the web
browser and desktop application—as parts of a single system
for performing work [2].

In this paper, we are concerned with the processes of finding
and re-finding task-specific information when using desktop
software. In this context, the theory of information foraging
provides a useful framework for considering these practices
[22]. Information foraging posits that people make use of

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

429

information scent to guide their selection and use of informa-
tion resources within “patches,” or collections, of information
[4]. When using the web, information scent is provided by
elements such as a search engine’s autocomplete service, the
short page snippets shown in search results, or previously vis-
ited links rendered in a different color. In desktop software,
menu hierarchies, command names, tool icons, and tooltips
all provide affordances that can be considered forms of infor-
mation scent that assist users in finding relevant functionality.

While these separate systems each provide useful forms of
information scent to guide the pursuit of desired information,
they largely function independently of one another: the ac-
tivities in one application have no effect on the presentation
of information in the other, forcing the user to manually link
information patches between the two applications. For exam-
ple, desktop software generally has no awareness of when the
user turns to the web to learn how to complete a task with the
software. Thus, when the user finds relevant information on
the web, they must manually connect that information with
the affordances and cues provided by the desktop software.
In this research, we are motivated to develop mechanisms that
more effectively link these distinct systems, to ease the pro-
cesses of finding and re-finding information within and across
applications.

This paper describes InterTwine, a system that introduces the
concept of interapplication information scent. Interapplica-
tion information scent links the separate information patches
of the web browser and desktop software, injecting novel
forms of information scent into both applications to facili-
tate the finding and re-finding of information. For example,
InterTwine embellishes a desktop application’s menus with
markers (what we call “beacons”) for menu items described
in the currently open, front-most browser window or tab (Fig-
ure 1a). Our current implementation explores these concepts
in the context of the Firefox web browser and the GNU Image
Manipulation Program (GIMP).

InterTwine is composed of three conceptual entities: 1) a
shared, interapplication history produced by recording ac-
tions in the web browser and desktop application, 2) mech-
anisms to identify information likely to be of relevance from
this shared history, and 3) novel interface mechanisms that
introduce context-aware, interapplication information scent
synthesized from this shared history.

Within this system, we demonstrate three different classes of
interapplication information scent: application bridges, his-
tory snippets, and history digests.

Application bridges are information scent cues that link infor-
mation in the currently open web page with the relevant fea-
tures of the desktop application. The previously mentioned
menu beacons are an example of application bridges. Inter-
Twine also bridges applications by injecting relevant snippets
from the open web document into the tooltips of the desk-
top application. Together, these bridges help users establish
and maintain a shared information context across application
spaces, easing the process of locating information referenced
in one application in the other application.

History snippets are a form of information scent that commu-
nicate the context surrounding the past use of a command or
web page. InterTwine provides history snippets by embellish-
ing tooltips with a paged display that lists the commands and
web pages leading up to, and following, previous invocations
of the command. This context helps people re-trace past steps
at a glance, and re-access relevant web content.

History digests provide context-dependent summaries of how
the desktop application was used with respect to a given web
page. InterTwine presents these history digests by augment-
ing Google search results with summaries that include before
and after screenshots of the related application document, and
the commands invoked in the desktop application when that
web page was open. Warnings are presented to the user for
pages in which operations were performed but later aban-
doned (suggesting the page may not have been that useful
for the task). This shared information scent helps users more
effectively locate web pages previously found to be useful.

Collectively, this paper makes the following contributions:

1. We present results from a formative study that informed the
need for, and design of, mechanisms that provide interap-
plication information scent

2. We introduce the concepts of a shared, interapplication his-
tory and interapplication information scent, and demon-
strate three types of interapplication information scent: ap-
plication bridges, history snippets, and history digests

3. We demonstrate these concepts within InterTwine, a sys-
tem that ties together the separate information spaces of
Firefox and GIMP

4. We validate these concepts via the results obtained from
our formative study

In the remainder of this paper we review related work, then
present the details of our formative study. We describe the
InterTwine prototype, and the types and instances of inter-
application information scents it provides, then describe our
strategy for constructing interapplication history. Finally, we
report how participants of the formative study and iterative
design process responded to the final version of the software,
and discuss future directions for research.

BACKGROUND
The central premise of this work is that web browsers, on-
line materials, and feature rich applications are often used to-
gether as a single productivity system. This perspective is
strongly supported by recent research that examines how web
search and access to online resources affects work practices
[3, 8, 14]. In particular, past work has observed that people
are more likely to be able to recall how to re-access helpful
material than the actual steps necessary to complete a task.
This effect is especially prevalent in the field of software de-
velopment, where programmers make extensive use of online
resources when writing code [3], or when answering techni-
cal questions in online forums [8]. More generally, Sparrow
et al., describe this phenomena as “an adaptive use of mem-
ory – to include the computer and online search engines as an
external memory system that can be accessed at will” [25].

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

430

When users rely on online materials as an external memory
store, they are counting on their ability to re-access those ma-
terials as needed at a later date. However, people rarely take
proactive measures to ensure their ability to return to impor-
tant information (e.g., bookmarks are underutilized) [12]. In-
stead, people trust their ability to re-find information using
strategies such as web search. Unfortunately, this re-finding
strategy is imperfect: users often express frustration in recre-
ating their search sessions [21], and fail to accurately remem-
ber up to 30% of previously issued searches after only a few
hours [26]. These breakdowns motivated the development of
systems such as SearchBar [20] and ActionShot [17], which
are both designed to help users more effectively retrace their
browsing sessions using data automatically collected in the
browser. InterTwine functions similarly to these systems, but
is differentiated by two important details: (1) InterTwine fo-
cuses on interapplication history, and (2) InterTwine actively
modifies existing interfaces to enhance and create informa-
tion scent. We discuss these two details next.

Shared, Interapplication Context
InterTwine maintains a shared interapplication history be-
tween the application and the browser. Other projects ar-
range for applications to share their immediate state or con-
text, without maintaining historical details. For example,
Pongnumkul et al.’s Pause and Play system [23] demon-
strates how a 3D modeling application can work together with
a video player to more effectively manage video playback
when users are following video demonstrations. Likewise,
Ekstrand et al. explored how search engines might leverage
contextual cues provided by a vector graphics drawing ap-
plication in order to return more relevant search results for a
given task [5]. InterTwine is differentiated from both projects
by its focus on injecting novel forms of information scent,
and by its use of historical data to help users re-find pages, or
to retrace their previously performed steps.

Hartmann’s HyperSource [10], and Goldman’s Codetrail [9]
are systems that also share context between a browser and a
given application. More specifically, HyperSource helps de-
velopers document and track the origin of code copied and
pasted from websites [10]. Codetrail is similar to Hyper-
Source, but forms these associations automatically by com-
paring recently written code to the text of pages in the web
browsing history [9]. InterTwine builds on these concepts,
extending them to end-user applications which require differ-
ent forms of shared context and information.

Scented Widgets and Snippets
InterTwine creates interapplication information scent through
embellishments to application widgets and search snippets.
In the literature, there are a number of projects that also em-
bellish widgets to enhance their information scent. Notably,
Willett et al. present guidelines and a Java framework for
embellishing standard interface widgets with small visualiza-
tions to enhance navigation of information spaces [27]. Like-
wise, Matejka et al. demonstrate how interfaces can be over-
laid with heat maps describing past use of the software by the
user, and by his or her community [18]. InterTwine draws
upon these projects for motivation, but differs from these

projects by its focus on building and maintaining contextually
aware interapplication scent trails. For example, InterTwine
embellishes widgets only if they are mentioned in the website
that is open in the user’s browser.

Finally, there are a number of projects that modify or extend
search result snippets to enhance their information scent. Ek-
strand’s system [5], discussed previously, embellishes Google
search result snippets for Inkscape tutorials by listing the
Inkscape commands listed therein. Likewise, Schwarz and
Morris extend search result pages with badges, bar charts and
other visualizations, designed to help users judge the credi-
bility of a particular search result [24]. InterTwine’s embel-
lishments differ in that they are personalized using interappli-
cation history.

In summary, users of complex software leverage online re-
sources as a form of external memory, but rarely take proac-
tive measures to ensure their ability to re-access this infor-
mation in the future. Instead, users attempt to re-find ma-
terials using search—a strategy that often fails. InterTwine
addresses this issue by maintaining a shared interapplication
history. It then uses this history to create interapplication
information scent, embellishing search results and interface
widgets to support finding and re-finding information. While
past work has separately explored many of these issues, In-
terTwine unites these ideas into a single system.

FORMATIVE STUDY
To guide development of InterTwine, we conducted a forma-
tive study to: 1) understand the breakdowns that occur when
online resources are used to support work in feature-rich ap-
plications, and 2) collect feedback on early designs of Inter-
Twine. Eleven individuals (six male, five female, mean age
of 26), with varying levels of experience with image editing
software, participated in this study. Participants received a
$10 Amazon gift card as remuneration for participating in the
formative study.

Each session was divided into two parts. In the first part of the
session, we asked participants to perform a pair of tasks (de-
scribed below) using unmodified versions of GIMP 2.8 and
Firefox 26. This afforded an opportunity to observe, first-
hand, how people find, follow, and re-find online materials
when performing tasks in a feature-rich application.

In the second half of each session, participants performed
the exact same tasks again, but using our experimental in-
terface designs. These designs ranged from sketches to fully
implemented prototypes. For non-functional prototypes, we
explained how they functioned and asked users for feedback
on their utility to complete the tasks they just performed. For
functional prototypes, participants were asked to think aloud
as they used the prototypes to complete the same tasks again.
Whenever possible, our prototypes were populated with data
generated in the first half of each session, thus giving partic-
ipants a chance to evaluate designs with “live” data. Designs
were iterated after each interview, to continually evolve the
prototype.

We chose two tasks whose solution is non-trivial in GIMP.
One task was to place a thick black border around a sample

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

431

of large text (i.e., outlining the text). The other task was to
modify a color photo so that the background was black and
white (i.e., selective desaturation). In all cases, tasks were
presented as pairs of before and after pictures without any
descriptive text. The order of presentation of tasks was coun-
terbalanced across participants. Prior to performing the first
task, participants were strongly advised to seek online mate-
rials for assistance.

Participants’ actions were captured by event logging soft-
ware, screen capture software, and an audio recording device.

Summary of Study Results and Implications for Design
In our study, we found that participants initially experienced
trouble locating commands mentioned in the web-based tu-
torials when switching back to GIMP. Participants also had
difficulty recalling their previous actions, both online (e.g.,
search queries, as in [26]), as well as in the application (e.g.,
commands and procedures).

While we expected participants would encounter some of
these issues, they occurred more frequently and with greater
severity than expected. For example, we observed partici-
pants identify promising commands mentioned in tutorials,
and then almost immediately forget the identity, location, and
details of those commands when switching into the desktop
application. This difficulty was observed even when tutori-
als explicitly and unambiguously mentioned the locations of
commands in the interface. In all of these situations, partici-
pants typically adopted a strategy of systematically exploring
an application’s menus and tooltips in the hope of recognizing
their target.

These results suggest there is value in linking the separate in-
formation spaces of the web browser and desktop application,
to make finding information presented in one application eas-
ier to locate in the other application. The difficulty in recall-
ing past actions also suggests the value of mechanisms that
assist in re-finding task-specific information at a later time.
These results directly led to the development of application
bridges and history snippets in InterTwine.

Our iterative design process also revealed that participants
were enthusiastic about seeing previously edited GIMP work
documents associated with relevant web pages in web search
result snippets. However, they expressed disinterest when
presented with fine-grained details of errors, dead-ends, or
unsuccessful sequences. Accordingly, we developed history
digests that summarize past activities, while indicating which
web pages appear to have had no effect on advancing the so-
lution.

We also asked participants how they would feel if non-
relevant web pages were wrongly associated with GIMP work
documents (e.g., linking a work document to a news article
that was coincidentally open in the web browser). Partici-
pants commented that such errors were easy to spot from the
snippets provided, and could be safely ignored, but posited
that a high frequency of errors would quickly eliminate any
such system’s advantages over the status quo. As such, Inter-
Twine takes several measures to ensure the relevance of any
associations made between web pages and GIMP documents.

Finally, when presented with a shared history depicting the
use of both applications, our participants expressed a desire to
see the full history, without omissions. Early designs revealed
only the most important commands or web pages, and were
generally disliked, as were designs that presented browsing
and procedural details in separate locations. Accordingly, In-
terTwine includes a shared history that shows all activity in
both applications.

We now describe InterTwine’s design in detail.

INTERTWINE
InterTwine is composed of three conceptual parts: a shared
interapplication history, mechanisms to identify potentially
relevant information from that history, and interapplication
information scent that helps users link the separate informa-
tion spaces of the web browser and desktop application.

We implemented these individual parts via a plugin-in for the
Firefox web browser, a modified version of the GIMP image
manipulation system, and a shared datastore and associated
shared history service that mediates communication between
Firefox and GIMP.

While the shared history service serves a key role in the sys-
tem, it operates automatically in the background, and is not
directly accessed by the user; users access its capabilities
through the various interface components described below.

InterTwine modifies GIMP by adding an interapplication his-
tory transcript, by embellishing its menu items with beacons,
and by adding history snippets to tooltips. In Firefox, In-
terTwine augments Google search result pages with history
digests. We describe each of these components in turn.

Interapplication History Transcript
The foundation of the InterTwine system is an interapplica-
tion interaction history. While these data are used to derive
many of InterTwine’s other features, users can also directly
view and interact with this history.

Our current implementation depicts this shared history in a
pane that adopts the metaphor of a chat program. When an ac-
tion is performed in an application, a “speech bubble” is pro-
duced representing that action (Figure 2). Entries contributed
by GIMP appear on the right. Entries contributed by Firefox
appear on the left. We chose this metaphor to make it easier to
visually parse the histories, and to establish a common visual
design that can be used in other parts of the interface.

All items displayed in the transcript are interactive. Click-
ing on a GIMP command bubble causes the command to be
invoked, and clicking on a web page bubble causes the web
page to open in Firefox and the web browser to come to the
foreground.

The transcript can also be searched. InterTwine’s transcripts
are indexed by command names, command tooltips, file
names, web page titles, internet search queries, web page
body text, dates, and times. This extensive coverage is de-
signed to allow users to index into the transcript using almost
any detail recalled about a previous session, and addresses the
goal of helping users re-find information.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

432

Figure 2. InterTwine adopts the metaphor of a chat program to com-
municate interapplication event history. When users issue commands in
GIMP, the commands appear as speech bubbles on the right-hand side.
When users visit pages in Firefox, the pages appear as speech bubbles
on the left-hand size.

Finally, embracing the notion of a chat system, users can di-
rectly add to this transcript by typing at the chat prompt (Fig-
ure 3). When users begin typing at the prompt, their input
is automatically completed with the names of GIMP com-
mands, as well as the titles of web pages in the browsing his-
tory. Selecting an item from the list of suggestions causes
the command to be performed, or the website to be opened
and brought to the foreground. This capability draws some
inspiration from Hendy et al.’s graphical enhanced keyboard
accelerators [11].

As with all InterTwine features, autocompletion makes exten-
sive use of the interapplication history and the current state of
both applications when determining what suggestions to pro-
vide, as well as their order. As an example, if a web page
is open in the user’s browser, then the suggested commands
are embellished with one style of beacon (i.e., marker) if they
are mentioned in that web page, and another style of beacon
if they were previously used the last time that web page was
open (as seen in Figure 3).

Interapplication Information Scent in Menus and Tooltips
InterTwine modifies the presentation of GIMP menus and
tooltips to provide interapplication information scent. This
information scent is informed by the shared history and the
currently visible web page.

Figure 3. A “chat prompt” is located directly below the transcript. From
this prompt, users can execute GIMP operations or visit web pages by
typing commands. The prompt autocompletes the input, allowing users
to issue commands with only a few key presses.

Figure 4. InterTwine embellishes menu items with beacons (star icons)
when those items are mentioned by name in the currently visible web
page. Likewise, menu tooltips gain snippets describing the context in
which each menu item is mentioned in the web page.

InterTwine embellishes menu items with a hollow star icon (a
beacon), to communicate that a given menu item is mentioned
on the web page the user currently has open in the browser
(Figure 4). These menu items’ tooltips are also augmented
to present web page excerpts that mention the given menu
item. These beacons and excerpts are designed to increase the
information scent of relevant menu items, and help bridge the
separate information spaces of the web page and the desktop
software.

InterTwine’s menu items are further enhanced based on their
history of use. Specifically, if users have previously visited
a web page and issued a command with that page open, then
InterTwine displays a filled star icon next to the menu item to
indicate past relevance. Furthermore, the item’s tooltip con-
tains excerpts of the interapplication history transcript detail-
ing its context of use (Figure 5). In cases where the menu item
has been used in multiple contexts, users can page through

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

433

Figure 5. When revisiting a web page, InterTwine places additional bea-
cons (filled-stars) next to commands that were used before in the context
of the web page. In these cases, the tooltips gain excerpts from the inter-
application history, describing their earlier context of use.

a slideshow of these excerpts using the left and right arrow
keys. Finally, at any time, users can press the F1 key to scroll
the full interapplication history (described above) to the cor-
responding time when the command was used.

Interapplication Information Scent in Web Search Results
In Firefox, InterTwine modifies the Google search results
page by enriching the standard search result snippets with de-
tails extracted from the interapplication history.

In situations where a search result item has been previously
visited, InterTwine retrieves details of the past visit, and gen-
erates a summary (or digest) of this information for review
(Figure 6). These digests include two screenshots of GIMP’s
canvas: one taken when the user first accessed the search re-
sult, the other taken when leaving the target web page. These
images serve as a visual summary of the work that was done
when previously visiting the page.

The snippet also details how long the page was previously
open, as well as the number of GIMP operations performed
while the page was focused in the browser. Two different
counts are presented: the total number of operations per-
formed, and the number of operations ultimately saved to the
work document. These counts differ when commands are un-
done, or when the user closes a document without saving or
exporting a result. In extreme cases where all commands are
abandoned, the snippets instead present a warning (Figure 7).

Finally, users can optionally click a hyperlink in the snippet to
reveal the context in which the page was previously accessed.
As with tooltips, these details are presented as excerpts from
the interapplication history.

IMPLEMENTATION
InterTwine’s implementation consists of three components
that interoperate on a user’s local machine: a modified ver-
sion of the GIMP image manipulation system, a plugin-in for
the Firefox web browser, and a local coordination service that
mediates communication between Firefox and GIMP. We de-
scribe each of these in turn.

Figure 6. InterTwine modifies Google search result snippets when web
pages have been previously visited. Here, InterTwine presents his-
tory summaries, which include screenshots of how the user’s document
evolved when previously reading the page. Additionally, the summaries
present statistics describing the time spent, and the number of com-
mands issued.

Figure 7. InterTwine’s history summaries present warnings to the user
in cases where earlier page visits resulted only in commands that were
later abandoned (e.g., commands that were undone or unsaved).

InterTwine requires two distinct sets of modifications to
GIMP. First, GIMP must be instrumented to record a user’s
low-level interactions with the software, as well as to record
screenshots of the user’s work document as it involves over
time. GIMP must also be modified to display the interappli-
cation history transcript, as well as custom menu items and
tooltips. InterTwine implements the transcript and the cus-
tom tooltips by embedding a Webkit browser directly into the
GIMP application. As such, InterTwine’s tooltips and tran-
scripts are themselves implemented in HTML and JavaScript.
This architecture was especially useful during the formative
study, allowing us to quickly iterate InterTwine’s designs.

As with the modifications to GIMP, InterTwine’s Firefox
plug-in serves two roles. First, it instruments the browser to
track a user’s actions online. Second, it modifies the pre-
sentation of the interface (i.e., Google search results). In
both cases, these actions are achieved by injecting custom
JavaScript code into the pages a user visits online. Instru-
mentation is achieved by coercing visited web pages to signal
interface events (e.g., page loads, scrolling, etc.) by making
an asynchronous request to InterTwine’s local service.

Finally, InterTwine’s local coordination service consists of
a lightweight web server running in the background of the
user’s machine. This service both collects instrumentation
data from GIMP and Firefox, and generates content for GIMP
transcript and tooltips, as well as the Google search result
snippets. Additionally, this service processes the instrumen-
tation data to generate the interapplication history. Next, we
describe our method of generating and refining the interappli-
cation history.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

434

Creating and Refining Shared Histories
In our formative study, users made extensive use of tabbed
browsing, and followed hyperlinks by opening each in a new
tab. Once opened, tabs were rarely closed before the end of
each session. Instead, participants returned to earlier pages by
switching tabs rather than by relying on the browser’s back-
ward and forward buttons.

We also observed two users adopting a strategy of “pre-
fetching” search results by opening promising links in new
tabs prior to visiting any individual result. In these cases, it
was common to retrieve pages that were never actually con-
sulted.

Finally, when participants leveraged online resources to per-
form unfamiliar tasks, they often continued to explore and
experiment with the application’s interface, sampling the ap-
plication’s capabilities and undoing many commands.

All of these practices complicate the process of producing
a meaningful, shared interapplication history: By the time
users complete a task, the histories and interactions logs are
extremely noisy, with relevant commands and web pages hid-
den in a sea of dead-ends and failed experiments. Accord-
ingly, we found it necessary to process and filter the shared
interapplication history.

In an effort to improve upon the naı̈ve approach to creating a
shared history, InterTwine gathers additional interaction de-
tails not present in standard browsing histories. In particu-
lar, InterTwine records which browser tabs are visible at any
given moment, providing an indication of relevance for each
tab. Likewise, InterTwine records interaction events that oc-
cur on web pages (e.g., page scroll events), and uses these
events to estimate the degree to which a page is being uti-
lized. Specifically, application commands are attributed to
web pages only if the web pages mention the name of the ap-
plication (“GIMP”) in their body text, and if the application
commands occur within 5 minutes of a web page interaction
event.

Additionally, InterTwine tracks the outcome of each com-
mand, noting if the command is ever undone, and if not,
whether the application document is ever saved (indicating
that the work in that document was deemed useful). These
data are then reflected in the history digests shown with
Google search results: digests display whether a visited web
page previously contributed any commands that were still in-
tact when the work document was saved.

FEEDBACK ON FINAL DESIGN
To evaluate the final design of InterTwine, we invited partici-
pants from our initial formative study to return 15 days after
their initial session. In addition to collecting feedback on how
the design had improved (or regressed), this final session af-
forded an opportunity to observe breakdowns that occur when
people repeat tasks several weeks apart, providing a way to
validate the system’s core purpose (i.e., to assist in re-finding
information). Five participants responded to our invitation,
and returning participants received an additional $10 Ama-
zon gift card as remuneration.

In this return session, participants were asked to perform one
of the original tasks. Since each participant experienced a
different prototype in the formative study, and because early
prototypes were not always functional, we could not carry
forward a participant’s earlier interapplication history. In-
stead, participants were greeted with a fresh installation of
GIMP, Firefox, and InterTwine. As with the formative study,
minimal instructions were provided. Tasks were presented
as pairs of before and after pictures without descriptive text,
and participants were advised to seek online materials. Inter-
Twine’s features were discussed as they were discovered, and
participants were asked for their interpretations before correct
use was demonstrated.

Results
At the onset of this final session, all five participants felt they
remembered enough about the task to complete it without
consulting the web. However, when the time came to actually
perform the task, none were able to complete the task without
consulting web resources. When asked about this discrep-
ancy, one participant explained:

“I think my dependence on the Internet is pretty high.
I’m sure I could have [completed the task], but some-
times I doubt myself and think I’ll do this faster with
Google” P2

After participants visited a few web pages, we called attention
to InterTwine’s interapplication history, and provided a brief
overview of InterTwine’s other features. Participants were
then asked to continue the task, and to provide feedback as
they worked.

Participants were generally positive about InterTwine’s indi-
vidual features. For example, P1, P3 and P5 were very en-
thusiastic about InterTwine’s menu and tooltip enhancements.
P3 had the following to say about these features:

“You don’t have to guess anymore. When you read
something and you think yeah, OK, and [then]... I mean,
I was powering through this pretty quick, because I
thought I knew how to do it. But if you are on a web
page and you go up there and... [in] the two seconds
you actually read something versus going to do it, you
forget what’s going on, and then boom, it’s right there
[referring to InterTwine’s beacons] ” P3

Likewise, participants P2, P3 and P4 explicitly mentioned
finding the shared history to be a useful tool. P2 reported this
feature as the single most significant improvement from the
prototypes discussed in the formative design process. P3 was
especially enthusiastic about the shared history’s command
prompt, stating:

“I’m just thinking like for an advanced user, someone
who has been using it for a while, just having the quick
keys [command prompt] down here rather than going
through all that, that’s kind of nice... Yeah, so once you
get handy with that I can see it being really, really pow-
erful.” P3

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

435

All five participants felt that the historical digests, added to
Google search results, were especially useful. This was not
unexpected, as 10 of the 11 original formative design partic-
ipants responded enthusiastically to prototypes with this fea-
ture. On this topic, P5 noted:

“I like where it says how long you’ve been on the web
page and what [you] did. It will tell me I saw this web
page quickly and I didn’t like it so I X’ed out of there.”
P5

Finally, P2 noted that InterTwine’s features were compelling
enough to switch image editors:

“My image editor of choice is Paint because it’s really
simple... I do have Paint.NET on my computer, but I
don’t use it. But with this sort of input, I would be more
likely to use GIMP, because it would help me do some
more advanced things that would be difficult to figure
out otherwise.” P2

Areas for Improvement
While participant feedback was very positive, participants of-
fered suggestions for improvements. For example, despite
being very enthusiastic about the menu beacons, P3 initially
failed to notice them at all. When the beacons were pointed
out by the researcher, the participant explained that the bea-
cons looked like menu text, and he was not sufficiently fa-
miliar with GIMP to know if they were something new. This
suggests the need to refine the presentation of these markers,
so that their designs better communicate their purpose.

Likewise, P5 noted that she found the features of InterTwine’s
shared history (e.g., search and auto-complete) to be com-
plex, and worried that she would not “use it to its full poten-
tial.” However, P5 felt that the excerpts of the history, pre-
sented in the tooltips and search results page, were accept-
able.

Finally, both P1 and P2 requested a mechanism for manually
managing the history. In particular, they expressed interest
in the ability to rate pages and command sequences, as well
as the ability to hide or delete items with poor ratings. We
feel that these are excellent feature requests, and that man-
ual management of interapplication history is a compelling
design dimension to explore in the future.

A final encouraging sign that InterTwine is offering features
that are generalizable, and of value, is that participants of-
fered numerous suggestions for other applications that could
benefit from the same interactions. For instance, P5 suggested
InterTwine could be applied to SPSS, Minitab, and other
statistics packages to help users recall how to perform various
statistical tests. Likewise, P1 commented that an InterTwine-
like system would be useful when using geographic informa-
tion systems. Finally, P2 stated:

”I’m just thinking like, even writing an essay, like if you
had your documents up like in Mendeley or whatever,
you can know you wrote this with this document open,
and you know what to cite. I’m just thinking of other
applications. It seems... I’m just astounded, this is really
cool.” P2

DISCUSSION & FUTURE WORK
InterTwine represents one targeted exploration of the notion
of interapplication information scent. The types of interaction
mechanisms chosen in this research were largely determined
by following the most salient leads uncovered in the formative
study. In this section, we discuss other promising research
trajectories, and other possible application domains.

Community Aggregation
InterTwine operates entirely on one’s own personal computer,
leveraging only personal browsing history and interaction
logs. One noteworthy finding from our formative study was
that participants were almost entirely unconcerned with shar-
ing their interaction details with a central service like Google
(10 of 11 participants had few or no concerns). Given this,
one could imagine aggregating a community’s interapplica-
tion histories, enabling a number of additional applications.

One compelling use of this aggregated data would be to im-
prove indexing of web-based tutorials. For example, a search
engine could use this information to influence the ranking
of search results, steering users away from tutorials that fre-
quently result in abandoned commands. Likewise, since in-
terapplication history does not depend on page text, these data
could be used to index non-textual tutorials such as screen-
casts and video demonstrations. For example, a search engine
could index tutorial videos using the names of the application
commands and tools that users typically invoke while visit-
ing each video. Users could then search for video demonstra-
tions by naming commands of interest. With additional in-
strumentation of the web browser, video timestamps could be
extracted and synchronized with application command invo-
cations, allowing search engines to index into videos, and en-
abling capabilities similar to those described in [13, 15, 16].
Beyond indexing web documents and videos, aggregate data
could also be applied to command recommendation systems
(e.g., [19]), and related projects (e.g.,[7, 18]).

Interapplication Information Scent in Other Domains
InterTwine creates interapplication information scent be-
tween a web browser and a feature-rich raster graphics ap-
plication. Other application pairings are possible—including
ones that do not involve a web browser. As an example,
a video editing application might notice coordinated use of
audio editing software, and could adapt by highlighting the
menu commands necessary to insert a new audio track into
the video. Likewise, an operating system’s file browser might
visually modify folder icons in cases where the user has a
terminal open in those directories, presenting a persistent vi-
sual trail as the user navigates the command shell through
the file system. Finally, after using graphical user interface
design software, such as QT Creator, programming environ-
ments could highlight lines of code related to objects recently
worked with in the interface designer.

Fading Information Scent
In our current implementation, interapplication information
scent is generated from the past history and current context
of both applications. These information scents persist as long
as the relevant context is present. However, it is possible that

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

436

this context (especially from the shared history) could result
in too much information scent accumulating, reducing the ef-
fectiveness of the concept.

To deal with this problem, interapplication information scent
could fade out over time, similar in spirit to Baudisch et. al’s
[1] phosphor effects in the interface. For example, menu bea-
cons could begin to fade after a web page has been open for
20 minutes. In general, we have not considered the possibil-
ity of incorporating hysteresis into our relevance models, but
this capability may be especially useful for some of the mech-
anisms proposed above (such as the trails left through the file
system as the user browses directories).

CONCLUSION
Online resources play an integral role in people’s strategies
for dealing with the complexities of feature-rich applications.
However, applications and web browsers currently function
as separate isolated entities, unaware of how activities in one
application may relate to activities in the other.

In this paper, we introduced InterTwine, a system that bridges
these two application domains through the constructs of in-
terapplication history and interapplication information scent.
We demonstrate three classes of tools to provide interapplica-
tion information scent: application bridges, history snippets,
and history digests. Together, these mechanisms help users
find and re-find task-relevant commands and resources.

A formative study spanning two sessions reveals that Inter-
Twine’s features resonate with users and suggest their overall
utility. Though InterTwine’s current implementation is tied to
GIMP and the Firefox web browser, we believe the ideas pre-
sented in this paper can be generalized to other feature-rich
applications. This sentiment is shared by many of those who
took part in the participatory design process, as evidenced by
their many enthusiastic suggestions for which applications to
work on next.

REFERENCES
1. Baudisch, P., Tan, D., Collomb, M., Robbins, D.,

Hinckley, K., Agrawala, M., Zhao, S., and Ramos, G.
Phosphor: Explaining transitions in the user interface
using afterglow effects. In Proceedings of the 19th
Annual ACM Symposium on User Interface Software
and Technology, UIST ’06, ACM (New York, NY, USA,
2006), 169–178.

2. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,
S. R. Example-centric programming: integrating web
search into the development environment. In Proc. CHI
’10, ACM (New York, NY, USA, 2010), 513–522.

3. Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., and
Klemmer, S. R. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proc CHI ’09, ACM (New York, NY,
USA, 2009), 1589–1598.

4. Chi, E. H., Pirolli, P., Chen, K., and Pitkow, J. Using
information scent to model user information needs and

actions and the web. In Proc CHI ’01, ACM (New York,
NY, USA, 2001).

5. Ekstrand, M., Li, W., Grossman, T., Matejka, J., and
Fitzmaurice, G. Searching for software learning
resources using application context. In Proc. UIST ’11,
ACM (New York, NY, USA, 2011), 195–204.

6. Fourney, A., Mann, R., and Terry, M. Characterizing the
usability of interactive applications through query log
analysis. In Proc. CHI ’11, ACM (New York, NY, USA,
2011), 1817–1826.

7. Fourney, A., Mann, R., and Terry, M. Query-feature
graphs: Bridging user vocabulary and system
functionality. In Proc. UIST ’11, ACM (New York, NY,
USA, 2011), 207–216.

8. Fourney, A., and Ringle Morris, M. Enhancing technical
Q&A forums with CiteHistory. In Proc. ICWSM ’13
(2013).

9. Goldman, M., and Miller, R. C. Codetrail: Connecting
source code and web resources. J. Vis. Lang. Comput.
20, 4 (Aug. 2009), 223–235.

10. Hartmann, B., Dhillon, M., and Chan, M. K.
HyperSource: bridging the gap between source and
code-related web sites. In Proc. CHI ’11, ACM (New
York, NY, USA, 2011).

11. Hendy, J., Booth, K. S., and McGrenere, J. Graphically
enhanced keyboard accelerators for GUIs. In Proc. GI
’10, Canadian Information Processing Society (Toronto,
Ont., Canada, 2010), 3–10.

12. Jones, W., Bruce, H., and Dumais, S. How do people get
back to information on the web? how can they do it
better. In Proc. INTERACT ’03 (2003), 793–796.

13. Kim, J., Nguyen, P. T., Weir, S., Guo, P. J., Miller, R. C.,
and Gajos, K. Z. Crowdsourcing step-by-step
information extraction to enhance existing how-to
videos. In CHI ’14, CHI ’14, ACM (New York, NY,
USA, 2014), 4017–4026.

14. Lafreniere, B. Task-Centric User Interfaces. PhD,
University of Waterloo, Waterloo, ON, Canada, Apr.
2014.

15. Lafreniere, B., Grossman, T., and Fitzmaurice, G.
Community enhanced tutorials: Improving tutorials with
multiple demonstrations. In CHI ’13, CHI ’13, ACM
(New York, NY, USA, 2013), 1779–1788.

16. Lafreniere, B., Grossman, T., Matejka, J., and
Fitzmaurice, G. Investigating the feasibility of extracting
tool demonstrations from in-situ video content. In CHI
’14, CHI ’14, ACM (New York, NY, USA, 2014),
4007–4016.

17. Li, I., Nichols, J., Lau, T., Drews, C., and Cypher, A.
Here’s what i did: Sharing and reusing web activity with
ActionShot. In Proc. CHI ’10, ACM (New York, NY,
USA, 2010), 723–732.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

437

18. Matejka, J., Grossman, T., and Fitzmaurice, G. Patina:
Dynamic heatmaps for visualizing application usage. In
Proc CHI ’13, ACM (New York, NY, USA, 2013),
3227–3236.

19. Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G.
CommunityCommands: command recommendations for
software applications. In Proc. UIST ’09, ACM (New
York, NY, USA, 2009), 193–202.

20. Morris, D., Ringel Morris, M., and Venolia, G.
SearchBar: a search-centric web history for task
resumption and information re-finding. In Proc. CHI
’08, ACM (New York, NY, USA, 2008).

21. Obendorf, H., Weinreich, H., Herder, E., and Mayer, M.
Web page revisitation revisited: implications of a
long-term click-stream study of browser usage. In Proc.
CHI ’07, ACM (New York, NY, USA, 2007), 597–606.

22. Pirolli, P., and Card, S. Information foraging.
Psychological Review 106, 4 (1999), 643–675.

23. Pongnumkul, S., Dontcheva, M., Li, W., Wang, J.,
Bourdev, L., Avidan, S., and Cohen, M. F.

Pause-and-play: Automatically linking screencast video
tutorials with applications. In Proc. UIST ’11, ACM
(New York, NY, USA, 2011), 135–144.

24. Schwarz, J., and Morris, M. Augmenting web pages and
search results to support credibility assessment. In Proc.
CHI ’11, ACM (New York, NY, USA, 2011).

25. Sparrow, B., Liu, J., and Wegner, D. M. Google effects
on memory: Cognitive consequences of having
information at our fingertips. Science 333, 6043 (2011),
776–778.

26. Teevan, J., Adar, E., Jones, R., and Potts, M. A. S.
Information re-retrieval: repeat queries in yahoo’s logs.
In Proc. SIGIR ’07, ACM (New York, NY, USA, 2007),
151–158.

27. Willett, W., Heer, J., and Agrawala, M. Scented widgets:
Improving navigation cues with embedded
visualizations. IEEE Transactions on Visualization and
Computer Graphics 13, 6 (Nov. 2007), 1129–1136.

Creative Tools UIST’14, October 5–8, 2014, Honolulu, HI, USA

438

	Introduction
	Background
	Shared, Interapplication Context
	Scented Widgets and Snippets

	Formative Study
	Summary of Study Results and Implications for Design

	InterTwine
	Interapplication History Transcript
	Interapplication Information Scent in Menus and Tooltips
	Interapplication Information Scent in Web Search Results

	Implementation
	Creating and Refining Shared Histories

	Feedback on Final Design
	Results
	Areas for Improvement

	Discussion & Future Work
	Community Aggregation
	Interapplication Information Scent in Other Domains
	Fading Information Scent

	Conclusion
	REFERENCES

