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Abstract

In this paper we argue that gestures based on non-
accidental motion features can be reliably detected amongst
unconstrained background motion. Specifically, we demon-
strate that humans can perform non-accidental motions
with high accuracy, and that these trajectories can be ex-
tracted from video with sufficient accuracy to reliably dis-
tinguish them from the background motion. We demonstrate
this by learning Gaussian mixture models of the features
associated with gesture. Non-accidental features result
in compact, heavily-weighted, mixture component distribu-
tions. We demonstrate reliable detection by using the mix-
ture models to discriminate non-accidental features from
the background.

1 Introduction

For many years, researchers have explored the visual per-
ception and recognition of hand gestures as a mechanism
for interacting with computers. One of the primary chal-
lenges faced when developing vision-based gestural inter-
faces, is that of gesture segmentation [11, 10, 3]. The issue
arises because cameras stream observations including both
gesture and non-gesture motion. A gestural interface must
be able to “spot” meaningful gestures in these longer mo-
tion sequences. We encountered this issue when developing
Maestro [5], a gesture-based presentation system. To ad-
dress the segmentation issue, Maestro introduced a set of
cues to signal the start or end of a gesture. For example,
several of Maestro’s gestures require that users begin by
placing both hands together directly over a specific image
location. Informally, these cues were selected to be easy
to perform and to detect, and yet be unlikely to occur by
accident.

Maestro’s segmentation cues are motivated by so-called
non-accidental features in computational perception. Re-
searchers have long advocated the use of non-accidental
features for image interpretation [12, 7]. The premise is
that image features, such as parallel, collinear, and coter-
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minating edges provide strong evidence for regularities in
the world. For example, coterminating edges in the image
are likely to arise from coterminating lines in the world (eg.,
due to corners or occluding boundaries of objects), collinear
edges are likely to arise from collinear lines in the world,
and so on. Similar arguments may be made for motion fea-
tures, such as a rigid collection of moving points [18].

Most gesture recognition work has focused on achiev-
ing robust recognition for general gestures, such as arbi-
trary strokes, repeated (waving) gestures, and even sign lan-
guage. Robustness is achieved through time warping (eg.,
condensation [2]), or explicit state-based models (eg., hid-
den Markov models [20, 3, 11]). In this paper we argue
that choosing gestures based on non-accidental features al-
lows for reliable gesture spotting. Specifically, we claim
that humans can perform non-accidental motions with high
accuracy, and that these trajectories can be extracted from
video with sufficient accuracy to reliably distinguish them
from the background motion. Our approach is similar to
[16] except their work focused on character strokes in writ-
ten language; instead, we ask if there are non-accidental
features in gesture. We analyze gestures by learning Gaus-
sian mixtures models of the features associated with ges-
ture. Non-accidental features result in compact, heavily-
weighted, mixture components. We demonstrate reliable
detection by using the mixture models to discriminate non-
accidental features from the background.

The remainder of this paper will discuss each of these
steps in detail. The discussion begins with a motivating ex-
ample.

2 Maestro - a motivating example

Gesture-based control of PowerPoint presentations is of-
ten cited as an example of hand gestures in human computer
interaction research. This has led to the implementation
of numerous demonstration systems [11, 1, 19]. Typically,
these systems graft gestural control onto existing presenta-
tion software not originally designed with gesture control
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Figure 1: A user controlling the Maestro pre-
sentation system using only hand gestures

inmind. We developed Maestro to explore the unique chal-
lenges and opportunities that arise from incorporating ges-
tural control from the ground up [5]. For example, Maestro
allows presenters to interact directly with the content of pro-
jected slides (figure 1), while the aforementioned presenta-
tion systems typically limit gestures to a few navigational
commands (such as those used to move between slides).
Some of Maestro’s gestures are listed in figure 2.

Maestro uses a set of cues to signal the start or end of
a gesture. This helps Maestro “spot” gestures in long se-
quences of hand motion. Most of these cues depend upon
the motion of the hands and/or on the spatial context in
which the motion is observed. In the case of spatial cues,
the content of the projected slides provides the necessary
context. For example, a cue might require that a user place
their hand near a “bullet” symbol when interacting with an
item from a bulleted list. Additionally, many of these cues
require the coordinated use of both hands. For example,
to signal the start of the “expand” or “collapse” gestures
(figures 2d and 2c¢) both hands must appear together over a
bullet point.

3 Gestures inspired by non-accidental fea-
tures

We would like to define a set of gestures whose per-
formance gives rise to non-accidental features in the ob-
served hand motion. This is guided by the hypothesis that
such gestures will be easily differentiated from background
motion. This requires a more formal description for non-
accidental features and so we refer to work done by Jep-
son and Richards who provide a Bayesian justification of
non-accidental features [8]. In their work, they describe the
world as having various properties that occur probabilisti-
cally. These properties cannot be observed directly, but can

117

(a) oBighlight bullets by pointing

(b) @ Follow hy%?inks by pointing

113, gse bullets with two hands

i

(e) Zoom Into Figures

(c) | @

bullets with two hands

(d) | oLxp

Figure 2: A few examples of gestures in Mae-
stro. Note that in (¢) and (d), the start of the
gesture is signalled by the observation of both
hands together over a bullet point. In (e), the
gesture is signalled by a similar observation.

only be inferred from various features that arise from ob-
servations. Any number of features can be derived from the
observations, but we limit our discussion to features which
support the reliable inference of world properties. Let F'
denote a world property and f denote the observed feature.
The inference is reliable if, and only if:

1. P(F)>0
P(f|F)

In other words, the inference is reliable if the proper-
ties have nonzero prior probability (1), and the likelihood
ratio of the feature given the property is large (2). Es-
sential to the non-accidental feature argument is the idea
that, in the absence of measurement noise, non-accidental
features occupy a lower dimensional subset of the feature
space. These subsets correspond to so-called “world regu-
larities”, and ensure that the aforementioned likelihood ra-
tio increases without bound as the measurement error de-
creases. For example, if we consider line segments in the
plane, non-accidental features could include various low di-
mensional subspaces, such as parallel, collinear, or cotermi-
nating lines, right angles, midpoints of lines, etc. [4].

Designing a gesture language to yield non-accidental
features requires some assumptions about the types of regu-
larities that a person can reliably introduce when instructed.
For example, a person may be able to reliably move their
hands (more-or-less) straight down, but will probably not
achieve the same level of reliability when instructed to move
at a precise angle of 53°. Similarly, a person may be reliable
when instructed to “stop”, but not when instructed to move
at some other specific velocity.

Our work begins by assuming the following regularities:
horizontal movement, vertical movement, and rest. Vertical
movement is defined as any motion where the hand’s verti-
cal position is allowed to vary with time, while the horizon-
tal position is held fixed. In this sense, vertical motion has 1
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degree of freedom. Horizontal motion is defined similarly,
and also has one degree of freedom. The category “rest”,
fixes both the hand’s horizontal and vertical positions, and
has no degrees of freedom. These categories are in contrast
to “unconstrained” motion where neither the horizontal nor
the vertical positions are fixed.

We consider gestures consisting of two motion segments,
each of which can take on one of the four aforementioned
categories. In total, each gesture allows up to 4 degrees of
freedom (each segment contributes 2 degrees). Following
[4] we can draw a category lattice based on the subspace
relations of the categories (see Fig. 3). The degrees of free-
dom (or dimension) of the category is shown on the left of
the figure. These categories are similar to those presented
in [9, 13], except that we have added direction information
(horizontal and vertical). Finally, we note that each node in
the lattice illustrates only one example of the corresponding
gesture form. Other examples can be obtained by reflec-
tion across either axis, or by considering obtuse angles as
opposed to acute angles (in the lower 2 levels of the lattice).

Degrees
of Freedom

Pause

0

| Vertical Stop

Vertical Start

Horizontal
Start

! General Start

Figure 3: A hierarchy of gesture forms, each
consisting of two motion segments. Each
segment is described as either: horizontal
movement, vertical movement, unconstrained
movement or rest. Shaded regions correspond
to the three gestures considered throughout
this paper.

All forms in the hierarchy, except “chevron”, have fewer
than 4 degrees of freedom. Consequently, these forms
have the potential to introduce non-accidental features.
In this paper we consider gestures based only on the
“corner”, “angle”, and “chevron” forms. In the “corner”
gesture, the initial segment involves only movement in the
positive z direction. Hence, this segment is parallel to the
z-axis. The second segment involves only movement in

the negative y direction, and is parallel to the y-axis. The
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resulting motion is highly specific, and allows for only
two degrees of freedom. The “angle” gesture (so named
on account of its similarity to the mathematical angle
symbol /), has 3 degrees of freedom. The first segment
of “angle” can generally be described as “up, and to the
right”, while the second segment remains “‘straight down”.
The “chevron” gesture has a full 4 degrees of freedom,
and is not expected to yield any non-accidental features.
This gesture can be described as first moving “up and
to the right”, and then moving “down and to the right”.
Table 1 lists the three gestures and their degrees of freedom.

’ \ Corner \ Angle \ Chevron

X" >0 >0 >0
Y =0 >0 >0
X, | =0 [ =0 >0
Y/ <0 <0 <0
[dof| 2 | 3 | 4 |

Table 1: The three gestures used throughout
this paper. Here X’ and X’ denote the hor-
izontal velocities of the first and second ges-
ture segments respectively. Y’ and Y are de-
fined similarly.

Here we note that the most restricted gesture form,
“pause”, is often used in conjunction with gesture-based in-
terfaces [6]. Perhaps most famously, pausing is the founda-
tion of the “dwell click” gesture, where users make selec-
tions by pausing their hand (or stylus, or gaze) directly over
a particular screen target. We opted against making explicit
use of this feature because it can lead to the “Midas touch”
problem [6], where gestures may inadvertently be activated
whenever, and wherever, the hands rest.

4 Models supporting the discovery of regu-
larities

In this section we describe the motion and mixture mod-
els used to discover regularities in the observations.

4.1 The motion model

Hand motion is modelled as a piecewise linear trajectory
of the hand’s centroid. In other words, the trajectory is com-
posed of numerous linear segments. Within each segment,
the hand moves with constant velocity. Of course, true hand
motion is not so simple; the hand must go through phases of
acceleration throughout the course of performing the ges-
tures. In practice, such phases are short-lived. Moreover,
the linear segments are easily recovered using the method
described by Mann et al. in [14]. This approach uses dy-
namic programming to recover a minimum-cost segmenta-
tion of the hand trajectory into piecewise polynomial seg-
ments. The total segmentation cost is the sum of squared

Authorized licensed use limited to: University of Waterloo. Downloaded on November 20, 2009 at 11:52 from IEEE Xplore. Restrictions apply.



errors in the polynomial fits, plus a fixed cost A for each
segment. In our case, the polynomials are taken to be of first
order, and the cost function can be expressed as follows

N

Cost = Z

n=1

tn

31X () — Kot )1 + A

i=tn_1

6]

where NN is the total number of segments in the model,
X(t) = [X(t) Y(t)]" is the observed hand position at time
t, and X, (t; 0,,) is the nth polynomial segment with coef-
ficients 6,,.

Having established a piecewise linear model of motion,
we now describe the feature space. At any instant ¢, the
hand’s motion can be parameterized by measuring the mod-
elled hand position X (¢;6,) = [X(t;6,) Y (t6,)]” and
velocity V(t;6,) = [X'(t;0,) Y'(t;0,)]T. To simplify
notation, we drop the parameterization by ¢ and 6,,, giving
X=X Y]T and V = [X’ Y’]T.

As a result of assuming zero acceleration, changes in
velocity occur instantaneously. This introduces disconti-
nuities in X’ and Y. To account for the possibility of a
discontinuity, the parameterization is augmented to include
measurements of both the left and right partial derivatives,
V.o = [X. V)T and V; = [X, V|7 respectively.
The motion at an instant is completely parameterized by the
vector

X v X v X,y

4.2 Features

2)

The gestures described in section 3 each include a sin-
gle direction change. These direction changes are encoded
as breakpoints in the motion model. Here breakpoints are
instants where the motion model switches from one linear
segment to the next. We select as features the motion pa-
rameterizations corresponding to the breakpoints. Since the
gestures in this paper are translation invariant, the spatial
parameters X and Y have little meaning and are ignored.
The set of all possible features, F, is the set of motion
parameterizations where the pair of left-partial derivatives
(X’ Y’]T differs from the pair of right-partial derivatives

(X N YJ’F]T This can be expressed as follows:

F={[X_ V' X, V)]V | X_#X, or Y/ #Y]}
3)
4.3 Mixture modelling

Performing gestures gives rise to various features ac-
cording to the distribution P(f|G) where f € F is a spe-
cific feature and G is the gesture performed. Since the ges-
tures involve exactly one direction change, at least one fea-
ture is expected for each performance. Additional features
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may also be introduced by more general changes in veloc-
ity. Our hypothesis is that some of these features are non-
accidental. Non-accidental features imply that there are reg-
ularities associated with gesture, and these regularities are
reflected by compact modes in P(f|G).

The true distribution P(f|G) is unknown, and must be
modelled. A Gaussian mixture model is used for this pur-
pose [15]. Each gesture GG is modelled by a separate mixture
model Mg, which generates features f according to the fol-
lowing:

K
P(fIMa) =Y m N(f 5 p Sr) )

i=k

where 7y, Zszl 7, = 1, is the prior probability of gen-
erating data from component k, and N(f ; pg, Xx) is the
Gaussian distribution with mean p;, and covariance matrix
Y, for component k. To learn the model parameters from
training data, we use the expectation maximization (EM)
algorithm [15].

S Implementation

Our experiments use the hand detection and tracking sys-
tem originally developed for Maestro. This system employs
the use of a single web camera and is particularly simple;
hands are detected and tracked via two brightly colored
gloves, one red, one blue. Detection is achieved using sim-
ple color thresholding techniques, while tracking is accom-
plished through the continuous detection of the gloves from
frame to frame. In our experiments, only the motion of the
red glove was considered. The actual Maestro system tracks
both gloves independently, allowing for the use of bimanual
gestures.

6 Results

In order to perform the modelling described in section 4,
a considerable amount of training data was required. Ap-
proximately 100 training examples were captured for each
of the three gestures being modelled. Of these 100 training
examples, 80 were used for learning the Gaussian mixture
models, and the remaining 20 examples were withheld for
validation purposes. Additionally, we captured several long
sequences consisting of background motion with intermit-
tent gestures.

Importantly, all gestures were performed in front of a
white screen onto which a small target was projected. When
performing each gesture, the hand motion was adjusted so
that the required direction changes coincided with the hand
reaching the target. After each performance, the target was
randomly repositioned. Performing gestures at differing
screen locations avoids the possibility of users repeating
identical trajectories.
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Figure 4: Component distributions learned for
the “corner” gesture. Each column represents
a different component. The first row corre-
sponds to the velocity V_ before the break-
point. The second row corresponds to the ve-
locity V__ after the breakpoint. The third row
displays the square root of the eigenvalues for
each of the distribution covariance matrices ;.
The fourth row depicts our interpretation of the
motion.

6.1 Clusters and potential regularities

Before learning the parameters of the mixture models,
feature extraction was performed individually on each of
the training examples (as described in section 4). On aver-
age, each training example contributed 4 features. As will
be demonstrated below, these extra features arise from addi-
tional unexpected regularities associated with each gesture.

For each gesture class, all features were collected and
these collections were then used to learn the mixture mod-
els. In all cases, the mixture models consisted of K = 6
mixture components. In the case of the “corner” gesture,
the mixture components are visualized in figure 4.

Qualitatively, the clusters for the “corner” gesture look
quite promising. In particular, we expected to see the com-
ponent distribution depicted in figure 4, column 3. This
distribution represents horizontal motion in the positive x
direction, followed by vertical motion in the negative y di-
rection. Somewhat unexpectedly, extra regularities occur in
clusters 4 and 5. These clusters correspond to cases where
there was a momentary pause between the horizontal and
vertical segments. In this vein, cluster 1 represents the act
of stopping upon completing the gesture, and cluster 2 rep-
resents the act of starting the gesture from rest. The final
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cluster is difficult to interpret. In any case, this cluster has
low weight and does not contribute much to the overall mix-
ture model.

Importantly, no single training example included fea-
tures from all of the first 5 clusters. This suggests that there
is some uncertainty in the classes of features that arise from
the performance of any gesture. When “spotting” gestures,
any approach that relies on the detection of a single regular-
ity may miss some instances of the gesture.

Principal component analysis (PCA) provides a conve-
nient means for analyzing the structure of the component
distributions. With PCA, the covariance matrix ¥; of the it
component distribution undergoes an eigenvalue decompo-
sition. The eigenvalues correspond to the variances along
each of the principal axes. The standard deviations are re-
covered by taking the square root. These values are listed in
the third row of figure 4.

Since covariance matrices are positive semi-definite,
their eigenvalues are all non-negative. If any of the eigen-
values are zero, then the covariance matrix is singular, and
the cluster’s points lie in a lower dimensional subspace of
the feature space. Provided that the corresponding mix-
ture component has positive weight, the cluster corresponds
to a regularity, and its features are considered to be non-
accidental.

Unfortunately, singular covariance matrices are almost
never observed in real data. This is because each fea-
ture incorporates some level of noise. Rather than search-
ing for singular covariance matrices, we search for heav-
ily weighted clusters with covariance matrices containing
exceptionally low eigenvalues. From figure 4, it is clear
that the first 5 components of the “corner” gesture fit this
description. These components are potential regularities.
Moreover, the first two components each have three low
eigenvalues. This suggests that the “starting” and “‘stop-
ping” components have fewer degrees of freedom as com-
pared to the “turning” component which has only two low
eigenvalues. This corresponds well with the starting and
stopping forms depicted in the lattice described in figure 3.

The component distributions corresponding to the “an-
gle” and “chevron” gestures are listed in figures 5 and 6.
Each of these gestures contributes three potential regular-
ities. Qualitatively, their component distributions appear
somewhat less compact than those observed for the “corner”
gesture. This trend is also apparent in general scattergrams
of the features before clustering (figure 7).

6.2 Validation

We now turn to the problem of spotting gestures in se-
quences containing intermittent background motion. Since
the gestures were motivated by non-accidental features, it is
natural to assume gestures occur in their vicinity. This leads
to a remarkably simple gesture spotting approach where
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Figure 5: Component distributions learned for
the “angle” gesture (compare with figure 4).
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Figure 6: Component distributions learned for
the “chevron” gesture (compare with figure 4).

every feature is classified as either belonging to the back-
ground or as being non-accidental (and arising from a ges-
ture). Classification makes use of the entire gesture mixture
model, and thus indirectly compares each observed feature
to all regularities associated with the gesture. If any fea-
tures are positively classified, an entire gesture instance is
considered spotted. Contiguous positive classifications are
considered to arise from a single gesture instance.

Ideally, to classify a feature as arising from either gesture
or background motion, one requires access to a model for
expected background motion. If such a model were known,

Comer Angle Chevron

Background

ke wg

. o :;551-
giall
X’+

Figure 7: Features observed for each of the
three gestures, as well as for a sample of un-
constrained background motion.

then classification could proceed using a maximum likeli-
hood approach. Unfortunately, we do not have access to
such a model. Instead the feature f is considered to arise
from a gesture if P(f|M¢g) > «, where « is a constant. For
this approach to be successful, known gesture features fg
should be assigned much higher likelihood by the model as
compared to known background features fp. This can be
captured by the following inequality:

N M
lOg [ Z sz|MG ‘| > lOg [ Z fBz|MG' ]

(5)
The expression on either side of the inequality can be in-
terpreted as the “log of the average likelihood”. The terms
fa,i and fp; represent the it features attributed to the ges-
ture or to the background respectively. There are N features
known to have been generated from the gesture and M fea-
tures known to have been generated by the background. In
order to check that this condition is satisfied, each gesture
model was tested against the held out training data as well
as to recordings of background hand motion. The results
are presented in figure 8.

Corner Angle Chevron
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Gesture  Background Gesture  Background Gesture  Background

Figure 8: (Each scattergram) Points depict the
log likelihood logP(f|Mc) of either a known
gesture feature (left), or a known background
feature (right). The arrows indicate the average
of the corresponding likelihoods.

For all three gestures, the inequality holds. Conse-
quently, we expect the aforementioned classification pro-
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cedure to be reasonably effective at classifying features. In
order to quantify this effectiveness we apply the classifi-
cation procedure to motion sequences in which both ges-
tures and background motion are present. The timing of the
gestures within these sequences is known in advance. This
establishes a ground-truth labelling of the features, and al-
lows for the measurement of the classifier’s precision and
recall. Precision is the percentage of correct classifications
amongst all features classified as arising from gestures. Re-
call is the percentage of all gesture features that were clas-
sified correctly. These measures can be expressed mathe-
matically as follows:

# of true positives
= (6)

# of true positives + # of false positives
# of true positives

precision

recall

# of true positives 4 # of false negatives

With the classification procedure described above, both
the precision and the recall scores depend directly on the
likelihood threshold «; precision increases with «, while
recall decreases. Since our work is motivated by the Mae-
stro presentation system, achieving a high precision is of the
utmost importance. When giving a presentation, presenters
are far more tolerant of false negatives than they are to false
positives [5]. In order to ensure a high level of precision we
set a to the lowest value possible while maintaining a preci-
sion of > 0.95. The recall achieved at this level of precision
is used as one measure of the effectiveness of the models at
spotting gestures. The results of these experiments are listed
in table 2.

[ d.of | Gesture | Recall [ Recall*

2 “corner” 0.84 1.00
3 “angle” 0.67 1.00
4 “chevron” | 0.40 0.79

Table 2: Recall scores for each of the 3 ges-
tures, where precision is fixed to ~ 0.95

While the recall score is informative, it is perhaps not
an entirely fair measure of the effectiveness of “spotting”
gestures. In order to “spot” a gesture, only one of its many
features needs to be recognized as arising from the gesture.
We therefore redefine recall to be the percentage of gestures
which result in the positive classification of at least one fea-
ture. We refer to this measure as recall*, and report the
corresponding scores in the fourth column of table 2.

For both the recall and the recall* measures, the “corner”
classifier scores better than the “angle” classifier, which in
turn scores better than the “chevron” classifier. This dif-
ference is depicted graphically in figure 9, which plots the
log likelihood of each model over time. Notice that as
the degrees of freedom increase, so does the threshold «.
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This corresponds to fewer gesture features falling above
this threshold, resulting in the drop of recall performance
that was reported in table 2. While preliminary, the results
suggest that classification performance becomes more re-
liable as dimension decreases. Furthermore, we may con-
sider “chevron” to be an arbitrary gesture with a full 4 de-
grees of freedom. The “chevron” results provide a baseline
performance for when non-accidental features are not used.
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Figure 9: Log likelihood P(f|M) of the model
over time (as new features arrive). Shaded re-
gions indicate intervals in which the gesture is
known to have occurred. The thick horizontal
line indicates the likelihood threshold «. Each
timeline shows 6 of the 20 gesture instances
used to test each category.

The aforementioned results are for the complete gesture
mixture models. In section 6.1 it was argued that only a
few components of each model are potential regularities to
which non-accidental features are attributed. Consequently,
it is expected that successful gesture spotting is driven pri-
marily by these components. To examine if this is indeed
the case, figure 10 breaks down the log likelihood of the
“corner” model into each of its component distributions.
Here the same data was used as in figure 9. The “corner”
gesture gave rise to 5 potential regularities, and in figure 10
these components exhibit strong responses to the gesture.

]
[
S

Log Likelihood

I
B
S

7 Discussion

In this paper we have shown that non-accidental features
do occur when people perform certain gestures, and that
these features can be reliably detected. This was demon-
strated by learning Gaussian mixture models of the features
associated with gesture. Non-accidental features resulted
in compact, heavily-weighted, mixture component distribu-
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Figure 10: Log likelihood vs. time for each
component distribution of the “corner” gesture
model. To the right of each time line lies a pic-
torial representation of the expected motion.

tions. Reliable detection was demonstrated by illustrating
how the mixture models provide effective means for dis-
criminating non-accidental features from the background.
In addition to the aforementioned primary results, an un-
expected result was the discovery of highly regular ges-
ture fragments (such as stopping and then restarting mid-
gesture). These fragments were not included in the original
gesture specifications, but emerged as regularities nonethe-
less. This may indicate that people hesitate briefly, between
the strokes of the gesture. Possible future work would be to
exploit the temporal constraints within the segmented tra-
jectories. Additionally, we will consider non-accidental fea-
tures associated with two-handed motion, and the spatial re-
lations between the hands and items on the screen. In fact,
cognitive scientists have already discovered that spatial re-
lations are used by subjects to describe object animacy [17].
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