
Query-Feature Graphs:
Bridging User Vocabulary and System Functionality

Adam Fourney
afourney@cs.uwaterloo.ca

Richard Mann
mannr@uwaterloo.ca

Michael Terry
mterry@cs.uwaterloo.ca

Cheriton School of Computer Science
University of Waterloo

ABSTRACT
This paper introduces query-feature graphs, or QF-graphs.
QF-graphs encode associations between high-level descrip-
tions of user goals (articulated as natural language search
queries) and the specific features of an interactive system
relevant to achieving those goals. For example, a QF-graph
for the GIMP graphics manipulation software links the query
“GIMP black and white” to the commands “desaturate” and
“grayscale.” We demonstrate how QF-graphs can be con-
structed using search query logs, search engine results, web
page content, and localization data from interactive systems.
An analysis of QF-graphs shows that the associations pro-
duced by our approach exhibit levels of accuracy that make
them eminently usable in a range of real-world applications.
Finally, we present three hypothetical user interface mecha-
nisms that illustrate the potential of QF-graphs: search-driven
interaction, dynamic tooltips, and app-to-app analogy search.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Query-feature Graph, Search-driven Interaction,
Dynamic Tooltips, Analogy Search

INTRODUCTION
When faced with a new task to accomplish, users of inter-
active systems must often navigate a gulf of execution [17]:
They have a goal, they are able to succinctly express their
goal, but they are unsure of how to accomplish the goal us-
ing the interactive system.

One of the hurdles in overcoming this knowledge gap is a dif-
ference in terminology. More specifically, the way users con-
ceptualize and articulate their needs does not always match
the (rather terse) vocabulary of the interactive system. In the
research described in this paper, we are interested in creating
a bridge between the user’s vocabulary and the vocabulary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16-19, 2011, Santa Barbara, CA, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

Figure 1: The query-feature graph pairs tasks, as nat-
urally expressed in user search queries, with relevant
system features.

of the system. Additionally, we wish to be able to automati-
cally construct and update this bridge as a system’s user base
grows and as people’s use of the system evolves.

Currently, users often bridge gulfs of execution by turning
to Internet search engines. In the ideal case, a search en-
gine returns links to web pages that describe how to achieve
the desired goal. As an example, consider the search “GIMP
black and white,” a commonly executed query used to learn
how to simulate the effect of black and white film using the
GIMP raster graphics editor [8]. Since GIMP has no com-
mand named “black and white,” users who wish to achieve
this effect must learn that commands such as “desaturate,”
“grayscale,” or “channel mixer” will yield the desired effect.
Indeed, searching for the phrase “GIMP black and white” re-
turns web pages describing the use of these very commands.

There are several notable aspects of this existing, manual
process. First, the user articulates their goal in their own
words, typically by expressing the desired outcome, rather
than by using the low-level language of the interface and its
commands. Second, the search engine (ideally) directs users
to relevant web pages. Third, the web pages most likely to as-
sist the user in achieving their goal combine natural language
descriptions of the task with the specific names of the com-
mands, tools, and preferences necessary to accomplish the

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

207

task. In essence, the web pages serve as “Rosetta Stones” be-
tween users’ conceptualizations of tasks and the actual tools
necessary to accomplish those tasks.

Inspired by this manual process, this paper presents a sys-
tem that automatically uncovers these relationships between
users’ vocabularies and the relevant system components. These
pairings are represented in what we call a query-feature graph
(Figure 1), or QF-graph (where “feature” in this context
refers to elements in an interactive system).

The QF-graph is a weighted bipartite graph with nodes rep-
resenting queries on one side, and nodes representing sys-
tem terminology on the other. Edges express an association
between a query and an interface component. The strength
of these associations are encoded as edge weights. While a
QF-graph can conceivably be assembled in a variety of ways,
this paper describes how to construct QF-graphs using search
query logs, search engine results, web page content, and lo-
calization data from interactive systems. As we will later
argue, this mode of construction confers with it a number of
advantages.

Once formed, a QF-graph can provide the foundation for a
range of novel interaction techniques. In this paper, we il-
lustrate its potential by outlining three possible interaction
techniques:
• a search-driven interface in which users type the task they

wish to accomplish, and the interface assembles a list of
the most relevant commands for the task

• dynamic and ever-evolving tooltips that display tasks which
reflect how the user community uses a given command

• app-to-app analogy search, which provides a mapping be-
tween the tools necessary to perform a task in one interface
and the equivalent tools in a second interface

Collectively, the QF-graph, its mode of construction, our val-
idation of the technique using real-world data, and the exam-
ple uses of the QF-graph constitute the primary contributions
of this paper.

In the remainder of this paper, we first contextualize this re-
search with respect to prior work, then describe the query-
feature graph and its automated construction in more detail.
We then present results from our analysis of the technique in
order to validate the quality of the query-feature associations
expressed in the QF-graph. We describe three novel inter-
action techniques enabled by a QF-graph and conclude with
a discussion of the approach’s limitations and directions for
future research.

RELATED WORK
The overall vision guiding this work is to create a system
that can connect users’ articulations of their goals with the
actual system functionality necessary to achieve these goals.
In this section, we describe existing mechanisms and past
research that aim to help users make these connections, then
discuss previous work that informed our approach of using
search queries and their related web pages to construct the
QF-graph.

Software commonly includes built-in help that can be searched.
However, current offerings represent static collections of doc-

uments developed by the software creators. As a result,
application-provided help may not always match the vocab-
ulary of the users, nor evolve to mirror how the software is
actually used in practice. Recognizing this deficiency, many
software applications now augment built-in help with the ca-
pability to execute the help query on web-based knowledge
bases. For example, Microsoft Word for Windows allows
users to perform a help search on Microsoft’s web servers if
none of the local results meet their needs. While these fa-
cilities offer a useful dynamic extension to traditional static
built-in help, searches are typically limited to the software
producer’s web properties and still require the user to manu-
ally link results with the actual functionality in the applica-
tion.

This process of manually linking web-based information to
the task at hand was observed by Brandt et al. in a study
of software developers [5]. For example, it was noticed
that developers often incorporate example code found on the
web into their own code projects. These findings led the re-
searchers to develop Blueprint, a system that more deeply in-
tegrates search-based practices into an IDE. Using Blueprint,
programmers can search for, navigate, and import code ex-
amples from the web by simply typing a few keywords in
the source code editor and pressing a hotkey. This mode of
interaction resembles the familiar auto-completion features
of modern IDEs, but greatly extends their capabilities to in-
clude knowledge culled from the web. Our work developing
QF-graphs shares similar motivations to this prior research,
though our focus is on explicitly linking user vocabularies
with system vocabularies.

In recent years, search-like interfaces for finding and issuing
commands in a user interface have grown in popularity. For
example, in all modern operating systems, users are able to
enter a few keywords into a search field to launch applica-
tions and load documents. Mac OS X takes this idea further,
and offers a search field in the system-wide help menu that
provides users with a means of searching and executing com-
mands found in the top few levels of any application’s men-
uing system. Similarly, programs like Quicksilver [4], Enso
[11], and Ubiquity [15] allow keyword search to be used to
both issue commands and specify command parameters.

This “search line” style of interaction has also been explored
in the research community. Notably, Inky provides “com-
mand line functionality for the web,” allowing users to send
emails, book flights, and reserve conference rooms, all by
entering a few keywords in a text field [14]. Inky provides
some tolerance of user input by recognizing a limited set of
synonyms, correcting spelling, and offering “sloppy syntax.”
In our own work, we are similarly motivated to allow users
to express their intentions without needing to know complex
syntax or specialized terminology.

The GEKA project by Jeff Hendy et al. [10], achieves search-
driven interaction in the form of “graphically enhanced key-
board accelerators.” These enhanced keyboard accelerators
make heavy use of query auto-completion to quickly search
through menus, toolbars and dialogs for commands. Users
can also specify command parameters within their input.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

208

While Inky, GEKA, and kin optimize the execution of com-
mands, they cater to users who already know what com-
mands they would like to issue. For users unfamiliar with
a task or interface, these tools will be less useful. Our work
building the QF-graph is intended to help this latter class of
users by providing a bridge between high-level descriptions
of tasks and the actual system features necessary to complete
those tasks.

From this user-centric view of QF-graphs, we turn now to
work related to the construction of a QF-graph.

The query-feature graph is similar in spirit to the query-
document bipartite graph discussed by Beeferman and Berger
in [2]. The graph described by Beeferman associates search
queries with web documents, and is constructed by recording
“click-through” patterns: As people perform web searches
and visit resultant pages, their transactions serve to associate
queries with documents. A similar query-document graph
was described by Baeza-Yates and Tiberi in [1]. In contrast,
we build a bipartite graph between queries and system func-
tionality using question-answering techniques. Specifically,
we use the question answering passage retrieval algorithm
(QAP) described in [6] to form query-feature associations
(again, where “features” in this context refer to the com-
mands, tools, preferences, and other elements of an interac-
tive system). Since click-through data is not made available
to the public, our approach is arguably more accessible and
actionable in generating QF-graphs.

In sum, given a high-level objective to accomplish with an
interactive system, a number of mechanisms exist to assist
users in translating that goal to actual system functionality.
However, at present, users must manually find and establish
these connections between tasks and system features. In the
section that follows, we describe how we automatically es-
tablish these associations via query-feature graphs.

THE QUERY-FEATURE GRAPH
The query-feature graph directly associates user search queries
with relevant system features (commands, menu items, di-
alogs, preferences, etc.) via an undirected weighted bipartite
graph. Formally, the query-feature graph, G = ({Q, F} , E),
is composed of the following components:

• Graph Vertices:
Q = {qi ; 1 ≤ i ≤ N}

Where Q is a set of distinct search queries pertaining
to the use of a given interactive system.

F = {fj ; 1 ≤ j ≤M}

Where F is a set of features, commands, menu items
or other interface components present in the system.

• Graph Edges:
E = {(qi, fj , wij) ; qi ∈ Q, fj ∈ F,wij ∈ R}

Where E is a set of 3-tuples, each representing a weighted
edge from a query vertex to a feature vertex. Each
weight, wij , expresses the strength of the association.

System Description of Feature Vertex Set F

Kindle 210 commands discovered through
manual exploration of the interface.

GIMP 830 commands enumerated by the
ingimp [21] project.

Inkscape 1785 strings extracted from Inkscape’s
primary en-US string table.

Firefox 583 strings extracted from Firefox’s
primary en-US string table.

Chrome 3088 strings extracted from Chrome’s
(Chromium) primary en-US string table.
Table 1: The five interactive systems for which we gen-
erated QF-graphs, along with a description of the data
source used to popular each graph’s feature vertex set.

We create a QF-graph by first enumerating the relevant search
queries and system features that populate the vertex sets
Q and F , respectively. We then establish associations be-
tween queries and features using techniques from question-
answering research. We describe each of these steps in detail
below.

Enumerating relevant search queries (Populating Q)
Assembling a meaningful set of queries, Q, is the first chal-
lenge in creating a QF-graph. While any string of characters
is a valid search query, it is desirable that Q contain queries
that best reflect common tasks and user vocabularies. An ob-
vious way to populate this set, then, is to sample the search
query logs of web search providers, looking for queries men-
tioning the interactive system. However, search query logs
are not made publicly available.

To approximate search query logs, we build upon our previ-
ous research by employing the CUTS procedure described in
[8]. CUTS leverages query auto-completion services (e.g.,
“Google Suggest”) to sample popular queries from the logs
of top-tier search engines. For publicly available software
applications, this technique has been demonstrated to reveal
tens or hundreds of thousands of queries for a given system.

Enumerating system features (Populating F)
To enumerate the features, F , of a system, we extract all
strings contained within the system’s internal string tables.
String tables are used for language localization, and contain
the text of all commands, error messages, and other user in-
terface elements used by the application. As such, there are
typically hundreds or thousands of strings in a string table.

Table 1 lists the five interactive systems we use as exam-
ples throughout the rest of this paper. With the exception of
the Amazon Kindle, the listed applications are open source,
and the string tables are distributed along with each project’s
source code. In order to obtain a list of features for the Ama-
zon Kindle, we systematically crawled the Kindle interface
and manually transcribed the UI components encountered.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

209

Associating Queries with Features (Populating E)
Associating queries with features is the final step in con-
structing a QF-graph. In this section, we present the specific
challenges inherent in this final step, then describe our use of
the question-answering approach, QAP, to establish query-
feature relationships.

Challenges
The goal of a QF-graph is to associate the text of queries
with the text representing software features. However, both
queries [12] and software features typically consist of only
a few words, limiting the range of approaches that can be
used to establish associations. More specifically, simplistic
term-matching approaches such as the vector space model of
information retrieval [18] cannot be readily applied: In the
vector space model, the similarity of two phrases depends on
the set of terms that the two phrases have in common. If the
phrases share few words, then their similarity score is low.
In our case, the use of term overlap is further confounded by
the fact that many queries are task or goal-related and tend to
have few words in common with any particular feature of the
system.

In order to address the issue of term sparsity, one can sim-
ply emulate existing search practices: Each search query can
be submitted to a search engine, the relevant web pages can
be retrieved, and the commands, actions or tools mentioned
within the web pages can be identified. This process enables
us to create associations between search queries and related
system functionality.

The strategy of using document retrieval to expand the set of
terms associated with a short phrase is not new. Specifically,
Bernstein et al. employed document retrieval to help cluster
short Twitter messages [3], and Shen et al. used document
retrieval to help classify search queries [19]. However, while
this approach has been found to be very effective in these
latter contexts, in the context of pairing search queries with
specific elements of an interface, this technique breaks down
when the resulting documents are multi-topical. For exam-
ple, a query to learn how to perform a particular task with an
application can yield web pages on user forums, frequently
asked question (FAQ) pages, or blogs, all of which are in-
herently multi-topical documents that can reference a wide
range of system features in the same document. The chal-
lenge, then, is to determine which portion of a document is
most relevant to a given search query.

To address this problem of multi-topical documents, one can
repeat the basic search process within each document, iden-
tifying and retrieving short passages that are most relevant to
the original query. These passages can then be processed to
identify what system features they mention.

This pipeline of retrieving relevant documents, retrieving rel-
evant passages, then identifying a set of relevant system com-
ponents, is essentially the same as that employed by many
question answering (QA) services (e.g., see [20]). As such,
we employed the QAP (Question Answering Passage) algo-

rithm originally described by Clarke et al. [6] to discover
associations between queries and system functionality. We
briefly describe QAP in the next section. Interested readers
are directed to [6] and [7] for a more thorough treatment of
the QAP algorithm.

An Overview of QAP
QAP proceeds in three distinct steps: 1) retrieve short doc-
ument passages relevant to the user’s question or query, 2)
identify potential answers in those passages, and 3) rank or
otherwise validate potential answers so that a final summary
can be presented to the user.

STEP 1: PASSAGE RETRIEVAL
The first step of QAP is to retrieve passages relevant to the
user’s query. QAP employs a cover-density ranking approach
that treats all document substrings that both begin and end
with a query keyword as potential passages. The details of
this cover-density ranking are beyond the scope of this paper,
but the ranking weighs the number of query keywords con-
tained within each substring against the substring’s length.
Favourable ranks are assigned to short substrings that contain
many query keywords. Once substrings are scored, longer
fixed-length passages are extracted by expanding each sub-
string about its midpoint. We elected to extract passages con-
sisting of 300 words after early experiments suggested that
this value was effective for the types of web pages and docu-
ments we were analyzing (forums, blogs, etc.). The original
QAP paper, [6], utilized passages consisting of 200 words.

The original QAP papers employed cover-density ranking
over all documents in the corpus. In the QA literature, it
is more common to first limit the search space by creating
a short list of documents that are potentially relevant to the
original question or search query [20]. Passage retrieval is
then employed over this smaller set of documents. To ap-
proximate this first step, we simply used Google’s public
search API [9] to retrieve the top 8 documents for each query.
Whether using the original QAP formulation, or our modifi-
cation, each document contributes only its highest scoring
passage to the next step of the process.

STEP 2: ANSWER EXTRACTION
The second step of QAP is to identify potential answers men-
tioned within the top k scoring passages. In our case k = 8.
In general, k can be any integer not exceeding the total num-
ber of passages (and documents, since each contributes only
its top passage). In the original QAP work, each query was
analyzed to determine the form of its expected answer. De-
pending on the question, answers might take the form of
dates, proper names, cities, numbers etc. Such answers can
be detected using regular expressions, or by matching a pas-
sage’s phrases against lists of potential answers. In the con-
text of our problem, document phrases are matched against
the features enumerated in the QF-graph’s vertex set F .

STEP 3: RANKING ANSWERS
The final step of QAP is to rank the potential answers that
were identified in passages. To do this, QAP exploits the
built-in redundancy of the web: The web is a large corpus,

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

210

and the answer to any question is likely to be found in many
documents. As such, QAP ranks answers using the following
measure:

score(q, f) = nq,f × log

(
|D|
df

)
(1)

Here, nq,f ≤ k represents the number of passages returned
for query q in which the feature f is mentioned. Similarly, df

is the number of distinct documents in the corpus in which
the feature’s corresponding phrase f occurs, and |D| is the
number of documents in the corpus overall. The term |D|/df

is just the familiar inverse-document frequency (idf) of the
phrase/system feature f . Since we do not have access to the
full Google document corpus, we estimate the idf statistic
from our smaller corpus of web pages relating to the inter-
active system under investigation. Depending on the inter-
active system, this corpus consists of tens or hundreds of
thousands of web documents collected using standard web
crawling practices.

Using QAP to generate edges
At the heart of the QAP question answering algorithm is the
function score(q, f), given by equation 1 above. This func-
tion assigns a numeric score to the tuple (q, f), expressing
the strength of the association between the query q and sys-
tem feature f . This score provides a means for weighting the
edges in the QF-graph. Specifically, G’s edges are defined as
follows:

E = { (qi, fj , wij); qi ∈ Q, fj ∈ F, (2)
wij = score(qi, fj) }

Additionally, notice that QAP accepts any sequence of words
as input. As such, the QF-graph can be actively updated as
new searches are performed. This is accomplished by simply
appending new queries to the query vertex set Q, and execut-
ing QAP to establish each new query’s associations with the
fixed set of system features F .

In theory, this method should establish reasonable connec-
tions between user queries and specific elements in the user
interface. The next section presents results from our analysis
examining the quality of these connections.

EVALUATION
To evaluate the quality of a QF-graph, we employed a variety
of metrics. Some of these metrics are standardized and are
used throughout information retrieval literature. Another was
developed by us for this particular problem domain. Since
results are often difficult to interpret on their own, we com-
pare QAP results to those achieved when using a more basic
term-matching approach for associating queries with features
(specifically, the standard vector space model [18]).

Experiment Setup
The QF-graphs produced by our technique were evaluated
using the following high-level steps. First, a set of test

queries is chosen. Second, for each test query, QAP’s re-
sults are recorded. Finally, the relevance of each result is
judged by an expert. Since we have already covered how we
construct the QF-graph, we describe the first and last steps of
this process.

Selecting test queries
For this experiment, we randomly selected 20 queries from
the query-feature graphs pertaining to each of the five inter-
active systems listed in Table 1. Because queries were se-
lected from the query-feature graphs (which itself was built
using queries harvested via CUTS), the queries represent
real-world user searches.

Judging relevance
Many queries describe a goal or a task that the user would
like to perform. We would like to know which system fea-
tures are relevant to the query, but we would also like to
know which sets of features are sufficient for completing the
task implied by the search. To accommodate both needs, we
manually crafted solutions for each test query. A solution
is a collection of relevant commands or system features that
“solves” or accomplishes the goal implied by the query. As
an example, there are two solution sets for the query “firefox
how to clear cookies”:

1. Clear Recent History, Cookies, Clear Now

2. Preferences, Privacy, Show Cookies,
Remove All Cookies

A system feature is said to be relevant to a query if the feature
appears in any of the query’s solutions. Similarly, we say
that a set of features, S, covers a solution when S contains
references to all system features required to implement that
solution. By this definition, the full set of features F covers
all solutions, and the empty set ∅ covers no solutions.

Given a selection of test queries and their associated solu-
tions, it is possible to employ a number of metrics to mea-
sure the quality of the QAP query-feature associations. We
describe these metrics next.

Performance Metrics
We employed four search-quality metrics to assess our QF-
graphs: Mean precision at 1, percent correct at 10, mean
average precision, and mean precision at *. Each of these
metrics is described below.

• Mean precision at 1
Mean precision at 1, denoted P@1, is a standard informa-
tion retrieval metric [22] that measures the proportion of
test queries whose top-ranking QAP result is judged to be
relevant.

• Percent correct at 10
The percent correct at 10 measure (%C@10) is another
simple metric that measures the proportion of test queries
for which at least one correct solution is covered by the
query’s top-10 QAP results.

• Mean average precision
Mean average precision (MAP) is a widely used informa-
tion retrieval metric that averages the precision of a set of

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

211

search results, measured at various levels of recall (see [22]
for more details). It is generally described as a measure of
the area underneath the precision-recall (or, receiver oper-
ating characteristic) curve. MAP scores range from 0 to 1,
with higher scores indicating better results.

• Mean precision at *
In question answering literature, one standard measure
of performance is mean reciprocal rank (MRR) [20]. A
query’s reciprocal rank is simply the multiplicative inverse
of the rank corresponding to the first correct answer in the
queries’ list of results. The mean reciprocal rank metric is
the average of the reciprocal ranks of all test queries.

In our domain, many queries cannot be “answered” by a
single result, but rather are “covered” by a set of results
that combine to form a correct solution. As such, we de-
veloped a metric similar in spirit to MRR, described below,
which we refer to as mean precision at *.

For each query q, let r∗ be the smallest integer such that
q’s top r∗ ranking QAP results cover one complete solu-
tion for the query. Precision at r∗, denoted Prec∗(q), is
the proportion of the top r∗ results that are judged to be
relevant to the query. P∗ is the arithmetic mean of these
Prec∗(q) scores across all test queries.

Importantly, the P∗ measure is equivalent to MRR in cases
where the query’s solution is covered by a single command
or system feature.

Experiment Results
Results from applying these four metrics to the experimental
QF-graphs are listed in Table 2. On average, 77% percent of
the test queries were “answered” (or covered) by the top-10
results returned by QAP. Moreover, the first QAP result was
relevant to the query in 63% of test cases.

Regarding individual applications, results for GIMP are quite
good in part because we were able to obtain a very accurate
list of GIMP’s commands, but also because GIMP command
names are sufficiently technical to not conflict with every-
day language, making it easier to identify commands men-
tioned in web pages. Similarly, results for Firefox are supe-
rior to those of Chrome because Firefox’s localization format
allowed us to easily identify strings associated with menu
items, buttons and other command-related UI components.
Conversely, Chrome’s localization database does not provide
this information. As a result, Chrome’s QF graph contains
a much broader set of strings (which explains why table 1
lists nearly six times as many strings from Chrome as it does
for Firefox). While most of these spurious strings rarely oc-
cur in search queries or web documents, some strings (e.g.,
Chrome’s “And then click”) are sufficiently common to in-
troduce errors.

To provide further context for interpreting these results, and
to measure the impact of QAP, we repeated the experiment
using a typical implementation of the vector space model to
match query phrases to system features. This approach is

System P@1 P∗ MAP %C@10
GIMP 0.800 0.725 0.467 90%
Firefox 0.750 0.601 0.496 75%
Chrome 0.500 0.598 0.382 75%
Inkscape 0.500 0.536 0.264 70%
Kindle 0.600 0.633 0.458 75%
Overall 0.630 0.619 0.413 77%

Table 2: Performance when using QAP for discovering
query-feature associations for five different interactive
systems.

System P@1 P∗ MAP %C@10
GIMP 0.450 0.302 0.132 30%
Firefox 0.500 0.501 0.264 70%
Chrome 0.050 0.197 0.074 45%
Inkscape 0.150 0.160 0.081 35%
Kindle 0.400 0.384 0.124 50%
Overall 0.310 0.309 0.135 46%

Table 3: Performance when using the vector space
model for discovering query-feature associations.

similar to those employed in existing interface search tools
(e.g., Mac OS X’s help menu search), and ranks query-
feature associations by averaging the importance weights of
the words that both the query and system feature have in
common. A word’s importance weight is simply its inverse
document frequency, described previously. Results from
these trials are listed in Table 3.

In all cases, with all metrics, QAP’s results are superior to
those obtained when using simple term matching (the stan-
dard vector space model).

From these experiments we conclude that, for a given query,
the top-10 query-feature associations discovered by QAP are
reasonable, and, in every case, the results obtained using
QAP are better than those produced by more typical imple-
mentations of interface search. Finally, these experiments
establish a baseline with which future research can be com-
pared, and improvements measured.

APPLICATIONS
QF-graphs can serve as the computational back-end for a
number of novel interface mechanisms. In this section, we
describe how the QF-graph can improve search-driven inter-
action, support dynamic tooltips, and enable application-to-
application analogy search. We use example data from actual
QF-graphs to illustrate the utility of QF-graphs in these hy-
pothetical interface mechanisms.

Search-driven Interaction
The concept of search-driven interaction is simple: The user
types in a few keywords and the system returns a ranked
list of relevant system commands and interface components.
This style of interaction can be useful when an application’s
features number in the hundreds or thousands [16].

QF-graphs provide a direct means of supporting search-driven
interaction. When the user enters a query, the QF-graph is
consulted to retrieve relevant system features. If the QF-

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

212

graph does not contain an entry for the query, QAP can be
used to provide this information on demand.

To illustrate the potential of this approach, the following ex-
amples demonstrate search results obtained using QF-graphs
for three different interactive systems. For each example, we
provide the top five results returned from querying the QF-
graph. The queries themselves were drawn from the corpora
of queries produced by CUTS, and thus represent frequently
issued queries by users.

Query: “gimp convert to black and white”
As noted in the Introduction, this query is issued by users
who would like to convert color digital images to images that
consists only of shades of gray. This effect is most easily
achieved using GIMP’s, grayscale or desaturate commands,
but can also be accomplished by selecting a “monochrome”
option in the channel mixer tool, or by decomposing the im-
age in order to extract its Luminosity channel (in HSL color
space).

QF-graph search results:
• Channel mixer
• Grayscale
• Desaturate
• Channels
• Decompose

Query: “how to get the kindle to read to you”
In this case, the user would like to enable the text-to-speech
feature of the Amazon Kindle. This is accomplished by
pressing the Aa hardware button, then navigating to the Text-
to-speech section of the dialog, and finally selecting the turn
on command.

QF-graph search results:
• Aa
• Text to speech
• Turn on
• Web browser
• Down (directional keypad)

Query: “change download location firefox”
Here, a user of the Firefox web browser would like to change
the location to which Firefox saves downloaded files. This
can be achieved by opening Firefox’s general preferences
and entering a different value in a text field titled “Save files
to.” Alternatively, the user can check the radio button titled
“Always ask me where to save files.”

QF-graph search results:
• Save files to
• Always ask me where to save files
• Always ask
• Location
• Save

Importantly, each of these three queries are task-related and
do not mention any system commands by name. Never-
theless, the QF-graph returns results directly relevant to the
goals implied by the queries, demonstrating the utility and
robustness of the approach.

Rank Query
1 gimp draw circle
2 draw a circle in gimp
3 drawing a circle in gimp
4 gimp drawing circle
5 gimp tutorial circle
6 draw ellipse gimp
7 gimp ellipse draw
...

Table 4: A partial list of queries neighbouring GIMP’s
“ellipse select” command.

Dynamic tooltips
The features represented in a QF-graph can also be “queried”
to determine the set of search queries associated with a given
feature. This capability motivates dynamic tooltips.

Dynamic tooltips extend standard tooltips or balloon help by
proactively describing the range of tasks that utilize the com-
mand or interface component currently in focus. These task
descriptions are derived from QF-graphs, which are them-
selves derived from real-world user search queries and from
web content, such as FAQs, forums, tutorials, and blog posts.
As a result, these tooltips dynamically track and reflect cur-
rent use of the software by the community. Figure 2 provides
an example of the contents such a dynamic tooltip could dis-
play for GIMP’s “ellipse select” command (where the con-
tents are derived from GIMP’s actual QF-graph).

To generate the contents of a dynamic tooltip, the system first
determines which queries are associated with a given system
feature f . The set of related queries Qf is simply the set
of vertices neighbouring f in the QF-graph. As an example,
Table 4 provides a partial list of the queries neighbouring the
“ellipse select” command in GIMP’s query-feature graph.

An exhaustive examination of these queries (in this case,
numbering over 750), reveals references to a variety of tasks
other than drawing circles or ellipses (e.g., writing text along
a circle, or correcting red eye). However, while there may ex-
ist numerous queries, many of these queries refer to the same
topic, as can be seen in the partial list of queries associated
with “ellipse select” shown in Table 4. In other words, there
is considerable redundancy in Qf .

Ellipse Select
Select an elliptical region.

Web searches related to “ellipse select” include:
1. gimp draw circle (see also: stroke selection, and shift)
2. draw ellipse gimp (see also: border, and bucket fill)
3. gimp text on circle (see also: text along path, and text tool)
4. draw a straight line in gimp (see also: shift, and paintbrush)
5. gimp correct red eye (see also: red-eye removal, and enhance)
6. vignette effect gimp (see also: opacity, and gaussian blur)
See more ...

Figure 2: The dynamic tooltip for GIMP’s “ellipse se-
lect” command. The list of related searches is derived
from GIMP’s QF-graph, as are the pairs of commands
associated with each search query.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

213

Figure 3: App-to-app analogy search relates features
found in one application to similar features found in
other applications. To accomplish this, the QF-graphs
of two applications are essentially joined together by
using the standard vector space model to identify sim-
ilar queries.

By removing redundancy in the set Qf , one can more con-
cisely express the variety of tasks in which the command f is
involved. In order to remove redundancy in Qf , we can re-
peatedly remove queries q whose query-feature edge weight
is less than that of some equivalent query, p ∈ Qf . We
consider two queries, q and p, equivalent if they share 4 of
their top-5 search results. Applying this procedure to the set
of queries related to GIMP’s “ellipse select” tool yields the
queries listed previously in Figure 2.

The queries listed in a dynamic tooltip can also be augmented
with an additional list of related commands. More specif-
ically, the top two features associated with each query (ex-
cluding the command for which the tooltip is generated) can
be displayed to provide more context about the tools neces-
sary to complete the task represented by the query. As an
example, the dynamic tooltip for the “ellipse select” tool in
Figure 2 lists an example query, “gimp text on circle”, along
with two additional commands: “text along path” and the
“text tool”. Both of these latter commands can be used in
conjunction with “ellipse select” to print text along the cir-
cumference of a circle. In some cases, these additional com-
mands may be sufficient to describe the set of commands
necessary to accomplish a task, thus aiding the user in learn-
ing how to use the interface. This specific use of QF-graphs
is similar in spirit to the user and item-based command rec-
ommendations discussed by Matejka et al. in [13]. However,
the recommendations generated from QF-graphs are likely
to be more task-specific and task-focused since they derive
from web pages and tutorials describing specific tasks.

App-to-App Analogy Search
Within a given domain, competing applications often provide
similar functionality, but use different naming conventions or
vocabularies for those features. As an example, in the do-
main of web browsers, Firefox’s “private browsing” feature
is equivalent to Chrome’s “Incognito” mode (both modes
limit the amount of information tracked and exchanged when
browsing the web). Despite these different system names,

users issue similar queries when searching for these capa-
bilities (since queries typically express a high-level goal).
These similarities in user queries make it possible to asso-
ciate queries in one application to queries in a second, com-
parable application.

Linking queries from two different applications serves to
connect the QF-graphs of the two applications (Figure 3).
Once connected, the paired graphs enable analogy search, or
the ability to directly relate the commands of one application
to similar commands in the second application.

As a demonstration of this concept, the results of applying
analogy search to the aforementioned private browsing ex-
ample are listed below. As can be seen, analogy search is
able to correctly associate Firefox’s “start private browsing”
command to Chrome’s “new incognito window” command.

Analogy: Chrome commands similar to Firefox’s
“Start Private Browsing” command:

Results:
• New incognito window
• Incognito
• Session
• And then click

In this example, analogy search begins by identifying the top
10 queries in Firefox’s QF-graph related to the “Start Pri-
vate Browsing” command. For each query, a term frequency
inverse document frequency (tf-idf) vector is created, as is
standard in the vector space model of information retrieval
[18]. A weighted sum of the 10 query vectors is then com-
puted in order to synthesize a single feature vector for the
“Start Private Browsing” command. Weights in the summa-
tion correspond to the query-feature edge weights in the QF
graph. This amalgamation of queries into a communal fea-
ture vector helps to mitigate the term sparsity problem, which
was previously discussed in the section entitled “Associating
Queries with Features.” Once the feature vector is computed,
an identical process is performed for each of Chrome’s com-
mands. The similarity between pairs of commands is then
computed as the dot product of the two vectors, and the high-
est scoring Chrome commands are listed in the search results.

As a further example of the effectiveness of app-to-app anal-
ogy search, consider two somewhat different applications:
GIMP and Inkscape. GIMP is a raster graphics editor, while
Inkscape is a vector graphics editor. Importantly, GIMP and
Inkscape both edit images, but do so using vastly different
metaphors and data (namely, pixels vs. vectors).

As an example of how these applications differ, GIMP allows
users to crop an image using a “crop” tool. To achieve a
similar effect in Inkscape, users must first select objects of
interest, then either set the “clipping region,” or “fit the page
to the selection.” Despite these marked differences, app-to-
app analogy search is able to correctly associate GIMP’s crop
tool with the appropriate Inkscape commands.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

214

Analogy: Inkscape commands similar to GIMP’s
“crop” command:

Results:
• Crop marks
• Select all in all layers
• Select
• Fit page to selection

Finally, it is also possible to use analogy search to identify re-
lated commands within the same application. The following
example illustrates this point:

Analogy: GIMP commands similar to GIMP’s
“stretch contrast” command:

Results:
• White Balance
• Auto (Levels)
• Stretch Contrast
• Colors

In the above example, analogy search correctly inferred that
GIMP’s “stretch contrast”, “white balance” and “auto levels”
commands are related in that they are often used in conjunc-
tion (or in place of) one another, in order to enhance a digital
photograph. (In this case, each of these commands is used to
manipulate an image’s histogram.)

DISCUSSION
We conclude our discussion of QF-graphs by considering
some of their limitations, challenges in automatically cre-
ating query-feature associations, and directions for future
work.

“Feature” ambiguity in web documents
In this paper, we identified system features referenced within
web pages by simply searching those web pages for instances
of phrases matching the names of commands, menus, and
other interface components. This approach works rather well
for commands with technical names (e.g., “unsharp mask”),
or for longer phrases (“Always check to see if Firefox is the
default browser on startup”). Such phrases are unlikely to
appear accidentally in documents. However, for short com-
mands (e.g., “Delete”, “Save”), there is considerable ambi-
guity, and it is difficult to decide if the document is referenc-
ing a command, or if the phrase is simply part of the docu-
ment’s prose. In this paper, the QAP scoring function (equa-
tion 1) addresses the problem by exploiting the redundancy
afforded by multiple relevant passages, all the while using in-
verse document frequency to reduce the impact of common
phrases. In other words, the scoring function requires that a
feature with a common name appear in many relevant pas-
sages in order to achieve a high score.

In future research, we would like to explore more sophisti-
cated means of identifying references to system features. In
examining tutorials and forum postings, we have noticed that
people often specify the full paths of commands in their text.
As an example, rather than simply writing “grayscale”, many
authors write “Image→Mode→Grayscale” when referring to
GIMP’s grayscale command. In the latter case, it is clear that
the terms “Image”, “Mode” and “Grayscale” are references

to interface components. Identifying these types of patterns
could increase the confidence that the use of a word actually
refers to an element in the system. Matching the phrase to
the known hierarchical organization of commands within an
interface could further increase confidence measures.

Exploiting temporal associations
Additionally, just as search queries are often task-related, so
too are the documents they retrieve. As such, many doc-
uments specify sequences of commands that must be ex-
ecuted in a particular order to achieve a desired outcome.
These command sequences are not reflected in the current
QF-graph, nor in the search results returned by QAP. This
can be disconcerting when the order of commands returned
does not match the order in which those commands should be
executed. As an example, consider the query “how to draw
a circle in gimp”. Depending on the strengths of the query-
feature associations, our system may return a ranked list of
commands where “stroke selection” appears before “ellipse
select” (where both commands must be used to draw a cir-
cle in GIMP since it provides no tools for drawing geometric
primitives).

In the future, we would like to extract command sequences
from documents, and use this sequencing information to im-
prove the range of possible applications of QF-graphs. As
an example, it would be beneficial if search-driven interac-
tion could return sequences of actions rather than individ-
ual commands. Similarly, the availability of sequencing in-
formation could allow the recommendations made by dy-
namic tooltips to automatically update as the user progresses
through a given task.

CONCLUSION
In this paper, we have presented QF-graphs, and demon-
strated how they can be constructed automatically from logs
of search queries, web pages, and localization data. While
it is conceivable that QF-graphs can be constructed using
alternative means or data sources, the approach outlined in
this paper confers a number of advantages. Specifically,
by drawing from query logs and web pages, we ensure that
QF-graphs graph can be continuously updated as system us-
age patterns change. Moreover, a completely automated ap-
proach ensures that data from thousands of users can be con-
sidered when associating queries with system features.

This paper also outlined how QF-graphs can be used to ad-
vance search-driven interaction, while paving the way for
new interaction techniques such as dynamic tooltips and appli-
cation-to-application analogy search. Collectively, these mech-
anisms help to bridge the gulf of execution in cases where
users are able to articulate their goals as search queries, but
are unsure of how to accomplish those goals in an interactive
system.

ACKNOWLEDGEMENTS
We would like to thank Charles Clarke for discussions which
helped to clarify various details regarding the QAP passage
retrieval algorithm.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

215

REFERENCES
1. Ricardo Baeza-Yates and Alessandro Tiberi.

Extracting semantic relations from query logs. In
Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining,
KDD ’07, pages 76–85, New York, NY, USA, 2007.
ACM.

2. Doug Beeferman and Adam Berger. Agglomerative
clustering of a search engine query log. In Proceedings
of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’00,
pages 407–416, New York, NY, USA, 2000. ACM.

3. Michael S. Bernstein, Bongwon Suh, Lichan Hong,
Jilin Chen, Sanjay Kairam, and Ed H. Chi. Eddi:
interactive topic-based browsing of social status
streams. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology,
UIST ’10, pages 303–312, New York, NY, USA, 2010.
ACM.

4. Blacktree Software. Quicksilver: OS X at your
fingertips. http://qsapp.com/, Retrieved April,
2011.

5. Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R. Klemmer. Example-centric programming:
integrating web search into the development
environment. In Proceedings of the 28th international
conference on Human factors in computing systems,
CHI ’10, pages 513–522, New York, NY, USA, 2010.
ACM.

6. Charles L. A. Clarke, Gordon V. Cormack, and
Thomas R. Lynam. Exploiting redundancy in question
answering. In Proceedings of the 24th annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’01,
pages 358–365, New York, NY, USA, 2001. ACM.

7. Charles L. A. Clarke, Gordon V. Cormack, and
Elizabeth A. Tudhope. Relevance ranking for one to
three term queries. Information Processing and
Management, 36(2):291 – 311, 2000.

8. Adam Fourney, Richard Mann, and Michael Terry.
Characterizing the usability of interactive applications
through query log analysis. In Proceedings of the 2011
annual conference on Human factors in computing
systems, CHI ’11, pages 1817–1826, New York, NY,
USA, 2011. ACM.

9. Google Corperation. Google custom search APIs and
tools. http:
//code.google.com/apis/customsearch/,
Retrieved April, 2011.

10. Jeff Hendy, Kellogg S. Booth, and Joanna McGrenere.
Graphically enhanced keyboard accelerators for GUIs.
In Proceedings of Graphics Interface 2010, GI ’10,
pages 3–10, Toronto, Ont., Canada, 2010. Canadian
Information Processing Society.

11. Humanized Inc. Enso.
http://www.humanized.com/enso/,
Retrieved April, 2011.

12. Melanie Kellar, Carolyn Watters, and Michael
Shepherd. A field study characterizing web-based
information-seeking tasks. J. Am. Soc. Inf. Sci.
Technol., 58(7):999–1018, 2007.

13. Justin Matejka, Wei Li, Tovi Grossman, and George
Fitzmaurice. Communitycommands: command
recommendations for software applications. In
Proceedings of the 22nd annual ACM symposium on
User interface software and technology, UIST ’09,
pages 193–202, New York, NY, USA, 2009. ACM.

14. Robert C. Miller, Victoria H. Chou, Michael Bernstein,
Greg Little, Max Van Kleek, David Karger, and
mc schraefel. Inky: a sloppy command line for the
web with rich visual feedback. In Proceedings of the
21st annual ACM symposium on User interface
software and technology, UIST ’08, pages 131–140,
New York, NY, USA, 2008. ACM.

15. Mozilla Labs. Ubiquity: An experimental interface
based on natural language input.
https://mozillalabs.com/ubiquity/,
Retrieved April, 2011.

16. Don Norman. The next UI breakthrough: command
lines. interactions, 14:44–45, May 2007.

17. Donald A. Norman. Cognitive Engineering, chapter 3.
User Centered System Design: New Perspectives on
Human-computer Interaction. Lawrence Erlbaum
Associates, 1986.

18. G. Salton, A. Wong, and C. S. Yang. A vector space
model for automatic indexing. Commun. ACM,
18:613–620, November 1975.

19. Dou Shen, Rong Pan, Jian-Tao Sun, Jeffrey Junfeng
Pan, Kangheng Wu, Jie Yin, and Qiang Yang.
Q2C@UST: our winning solution to query
classification in KDDCUP 2005. SIGKDD Explor.
Newsl., 7:100–110, December 2005.

20. Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron
Fernandes, and Gregory Marton. Quantitative
evaluation of passage retrieval algorithms for question
answering. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and
development in informaion retrieval, SIGIR ’03, pages
41–47, New York, NY, USA, 2003. ACM.

21. Michael Terry, Matthew Kay, Brad Van Vugt, Brandon
Slack, and Terry Park. ingimp: introducing
instrumentation to an end-user open source
application. In Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing
systems, CHI ’08, pages 607–616, New York, NY,
USA, 2008. ACM.

22. Andrew Turpin and Falk Scholer. User performance
versus precision measures for simple search tasks. In
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, SIGIR ’06, pages 11–18, New
York, NY, USA, 2006. ACM.

Paper Session: Development UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

216

http://qsapp.com/
http://code.google.com/apis/customsearch/
http://code.google.com/apis/customsearch/
http://www.humanized.com/enso/
https://mozillalabs.com/ubiquity/

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	THE QUERY-FEATURE GRAPH
	Enumerating relevant search queries (Populating Q)
	Enumerating system features (Populating F)
	Associating Queries with Features (Populating E)
	Challenges
	An Overview of QAP
	Using QAP to generate edges

	EVALUATION
	Experiment Setup
	Selecting test queries
	Judging relevance

	Performance Metrics
	Experiment Results

	APPLICATIONS
	Search-driven Interaction
	Dynamic tooltips
	App-to-App Analogy Search

	DISCUSSION
	``Feature'' ambiguity in web documents
	Exploiting temporal associations

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

