
 

Mining Online Software Tutorials: 
Challenges and Open Problems

 
 

Abstract 
Web-based software tutorials contain a wealth of 
information describing software tasks and workflows. 
There is growing interest in mining these resources for 
task modeling, automation, machine-guided help, 
interface search, and other applications. As a first step, 
past work has shown success in extracting individual 
commands from textual instructions. In this paper, we 
ask: How much further do we have to go to more fully 
interpret or automate a tutorial? We take a bottom-up 
approach, asking what it would take to: (1) interpret 
individual steps, (2) follow sequences of steps, and (3) 
locate procedural content in larger texts. 

Author Keywords 
Tutorial mining; Natural language processing 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., 
HCI): Miscellaneous.  

Introduction 
The Internet contains a vast and rich repository of 
tutorials and other procedural information describing 
how to accomplish a wide range of tasks with almost 
any publicly available interactive system. For nearly 
any task, it is likely that there exists online instructional 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than the author(s) must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from Permissions@acm.org. 
CHI 2014, April 26 - May 01, 2014, Toronto, ON, Canada. 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-2474-8/14/04…$15.00. 
http://dx.doi.org/10.1145/2559206.2578862 
 

Adam Fourney 
University of Waterloo 
Waterloo, ON, Canada 
afourney@cs.uwaterloo.ca 
 
Michael Terry 
University of Waterloo 
Waterloo, ON, Canada 
mterry@cs.uwaterloo.ca 
 
 

 
 



 

content that will assist users in accomplishing their 
goals. 

Recognizing the wealth of data afforded by these 
resources, researchers in recent years have turned to 
the problem of extracting useful data from online 
tutorials. This past research has explored applications 
of these data including task modeling [2], software 
automation [1,10,14], machine-guided help [11], and 
interface search [5,6]. Beyond this existing research, 
there are many compelling ways this data could be 
utilized. For example, a system could infer the time 
required to perform a tutorial, the target audience of 
the tutorial (e.g., novice vs. expert), or the amount of 
creativity or input expected of users. Tutorials could 
also be used to infer attributes related to the design of 
the software, such as missing features, or features that 
frequently lead to breakdowns in use of the software. 

The primary challenges in extracting data from tutorials 
lie in the fact that the information is represented using 
natural language and, frequently, images and video 
content, requiring systems that can transform this free-
form content into forms that systems can readily 
reason about. Much of the prior work in this space has 
focused on extracting information from text-based 
tutorials, which is also the focus of this paper. This past 
work has demonstrated [5,10,11,14] that mentions of 
user interface widgets (tools, menus, etc.) can be 
detected in instructional material with accuracies of 95-
97%. But, the information available in tutorials is much 
richer and more nuanced than simple lists of widgets or 
commands. Despite clear progress, greater, and 
broader, machine understanding of instructional 
materials remains a significant research challenge. 

As an example, consider the following excerpt from a 
real-world photo manipulation tutorial: 

“Place it underneath the original text, as if it 
were a reflection.” 

The correct interpretation of this instruction requires: 
(a) coreference resolution [8], to determine to which 
object the pronoun “it” refers; (b) spatial reasoning, to 
determine approximately where the item is to be 
placed; and (c) an understanding of the purpose clause 
[4]  “as if it were a reflection” to further constrain the 
final placement. In this case, three challenges arise 
from a single tutorial sentence. When examining full 
tutorials, these and other challenges quickly 
accumulate, compounding the problem (e.g., See 
Figure 1). 

The primary contribution of this paper is to present a 
roadmap for the research challenges that must be 
tackled for more complete machine understanding of 
instructional materials for interactive systems, with a 
focus on text-based materials. The paper serves to 
consolidate and organize the failure cases and 
limitations mentioned in past work, including some of 
our own papers [5,6]. It also presents challenges we 
have encountered while working in this space, many of 
which have not been explicitly identified in past work, 
but are nonetheless critical to the correct interpretation 
of written instructions. Throughout the paper, we 
contextualize each challenge with numerous real-world 
examples across a range of applications and tutorials, 
and discuss partial or potential solutions when such 
mitigations are possible. 

Underspecified steps: 
“Create a new, rather large 
document.” 
 

Anti-patterns: 
“Whatever you do, don’t 
create a hanging indent by 
pressing the space key to 
create spaces, or even by 
tabbing across the page” 
 

Theory or background: 
“Unsharp mask works by 
increasing the contrast 
between edges in the 
photos.” 
  

Figure 1: Samples of tutorial 
steps that demonstrate 
challenges posed by: 
underspecified steps or 
parameters (top), anti-patterns 
or warnings of what not to do 
(middle), and text that provides 
background or theoretical 
details that need not be 
executed by the user (bottom). 



 

Background 
Much of the prior work in this research area has 
focused on extracting commands and parameter values 
from text-based sources, typically using supervised 
learning methods. 

Motivated by the desire to improve guided help 
systems, Lau et al. explored possible strategies for 
extracting operations from handwritten how-to 
instructions generated by workers on Mechanical Turk 
[11]. In this work, the authors manually segmented the 
instructions so that each segment contained an action 
(e.g., click), a target (e.g., the “OK” button), and any 
associated values (e.g., parameters). In comparing 
approaches for extracting data, they found a keyword 
(template-based) strategy outperformed both a 
handcrafted grammar and a set of maximum entropy 
classifiers, achieving accuracies of 93%, 90% and 65% 
for recovering actions, values, and targets, 
respectively. However, their techniques assume all text 
segments describe operations to perform, which the 
authors found to be true only ~50% of the time. 

Lau et al.'s work was later expanded upon [14], with 
the goal of transforming professionally written test 
cases into automated software testing procedures. In 
this later work, support vector machines (SVMs) and 
conditional random fields (CRFs) were utilized to 
segment the text into steps and extract actions, 
targets, and values from the resultant segments. The 
authors achieved F1-scores consistently over 0.95 for 
segmentation, and similar scores for each of the 
aforementioned entity types. Even with these high 
scores, errors and ambiguity accumulated when 
interpreting complete operations, and the resultant 
system correctly interpreted 70% of the steps. 

In the realm of online tutorials, which typically contain 
a lot of “noise” in the data (e.g., ads, site navigation, 
comments) our previous work [5] explored the 
possibility of detecting mentions of the software’s user 
interface elements (e.g., menus, dialogs, tools) 
referenced in text. In this work, we utilized naive Bayes 
classifiers with a carefully selected set of features, and 
achieved an F1-score of 0.87 when processing GIMP 
photo manipulation tutorials. Comparably, Laput et al. 
[10] utilized conditional random fields (CRFs) to detect 
menus, tools and parameters in Photoshop tutorials. 
Resultant F1-scores of 0.97, 0.98 and 0.36 were 
achieved for menus, tools and parameters respectively. 

In contrast to the work described above, Brasser and 
Linden [2] strived to automatically extract detailed task 
models from written scenarios. The authors manually 
crafted a natural language grammar, which was 
implemented as a 25-state augmented transition 
network. Compared to more recent work employing 
machine learning, the hand-built grammar did not 
perform particularly well. Tasks were segmented with 
63% accuracy, and entities were detected with 48% 
accuracy. 

In this vein, Branavan et al. [1] demonstrated the 
potential for reinforcement learning approaches for 
interpreting natural language instructions. Branavan et 
al.'s technique learns how to interpret instructions by 
repeatedly testing hypotheses within a virtual machine. 
This approach has the advantage of being able to 
interpret some high-level composite actions that lack 
mention of the specific low-level operations needed to 
perform those actions in the interface. The authors 
reported that their method was able to correctly 
interpret 62% of the high-level actions in their dataset.  



 

Finally, procedural information can occur in online 
contexts beyond tutorials. Andrew Ko’s Frictionary 
system [9] extracts software feature/action phrases 
from Firefox support forums, where users discuss their 
actions together with problematic software behaviors. 
Firctionary employs a probabilistic context free 
grammar, a dictionary of Firefox-related language, and 
a set of parsing and filtering heuristics, to identify and 
aggregate problem topics indicated in the corpus. 

In reflecting on this past work, the greatest successes 
to date have been in recognizing interface widgets and 
commands mentioned in tutorials. Recovering the 
parameters of those actions has proven to be more 
challenging [10]. Furthermore, performance quickly 
decreases when systems are tasked with performing 
(or fully modeling) the steps described by the tutorial 
[1,2,14]. In the sections that follow, we examine the 
reasons why extracting information beyond specific 
widgets and commands is challenging. 

Method 
We derive research challenges for machine 
understanding of tutorials from two sources: 1) failure 
cases and limitations explicitly reported in previous 
published research, and 2) an analysis of tutorials 
gathered for three feature-rich applications: GIMP, 
Inkscape, and MS Word. In the latter analysis, we 
analyzed over 2,000 clauses extracted from a random 
subset of tutorials for these applications. These clauses 
were initially collected as part of a project aimed at 
developing a taxonomy describing the types of 
information found in tutorials. It was during the course 
of developing this taxonomy that we gained an 
appreciation for the imprecise nature of tutorial text.  

In presenting examples pulled from these tutorials, we 
use the notation (W) to denote examples selected from 
Microsoft Word tutorials, (G) to denote examples 
selected from GIMP tutorials, and (I) to denote 
examples selected from Inkscape tutorials. 

We structure our presentation by briefly discussing 
well-known NLP challenges and how these challenges 
manifest themselves in software tutorials. We then take 
a bottom-up approach and describe the problems of 
interpreting individual isolated instructions, the 
problems associated with arranging instructions into 
sequences, and, finally, the problems encountered 
when determining which parts of a tutorial contain 
actual procedural content. 

General NLP Challenges 
Text-based instructional materials for software exhibit 
challenges well known in the fields of natural language 
processing and information extraction. We enumerate 
those problems here, and contextualize them in the 
domain of software tutorials.  

Coreference resolution 
A common challenge in natural language processing is 
coreference resolution, or the problem of resolving 
pronouns and other references, to the persons, objects 
or places to which they refer [8]. Correct interpretation 
of tutorial content also requires coreference resolution, 
as the following example, and those of Figure 2, 
illustrate:   

“That's the one you need, so click it.” (W) 

Despite the prevalence of coreference resolution 
discussions in the NLP literature, and with the exception 

“Just Ctrl + click that object 
and it will be selected.” (I) 

“Over that make a 
transparent layer.” (G)  

Figure 2: Tutorial phrases 
requiring coreference 
resolution for correct 
interpretation. 



 

of Frictionary [9], past work in tutorial mining has not 
acknowledged or attempted to address this challenge. 

Entity linking 
Related to corefrence resolution is the problem of 
mapping entities mentioned in text to tools, commands, 
document objects, and other widgets in the target 
software application. This is an instance of the more 
general entity linking [7] problem in the information 
extraction literature (also known as named entity 
disambiguation). While the captions, labels, and official 
names given to user interface objects typically 
constrain the terms used by tutorial writers, numerous 
factors can give rise to a broader vocabulary and the 
use of synonyms for identical objects. For example, 
Ekstrand et al. noted that Inkscape users often refer to 
a “line tool” rather than to the correctly named “pen 
tool” because this tool is commonly used to draw 
straight lines [3]. Likewise, we have observed that 
GIMP tutorials often refer to an “Eyedropper” tool 
rather than the official name, “Color Picker,” because 
the tool’s icon depicts an eyedropper. Similar examples 
for MS Word and Inkscape are presented in Figure 3. 
There also exist extreme cases, where authors specify 
entities in manners that are especially novel or 
elaborate, giving rise to challenging entity resolution 
requirements: 

 “Click on the icon that looks like a piece 
of paper with the top right corner folded 
down.” (G) 

Text Segmentation 
Another challenge widely acknowledged in past work is 
that of splitting procedural text into discrete steps or 
operations [10,11,14].  As will be discussed in the next 

section, the concept of an operation is itself rarely 
precisely defined, but, independent of definition, there 
arise cases where a single operation spans multiple 
sentences, as well as cases where a single sentence 
contains numerous steps. The latter scenario is 
illustrated below: 

“Once you've got the base image, you can 
duplicate it (Ctrl + D), flatten the 
duplicate (<Image> Layers -> Flatten 
Image) and then experiment.” (G) 

The need to identify steps in streams of text is a 
specific instantiation of the more general NLP problem 
of text segmentation [12]. More common examples of 
text segmentation include word breaking, sentence 
splitting, chunking, and detecting topic boundaries. In 
the context of segmenting instructions into steps, 
Pedemonte et al. have demonstrated that conditional 
random fields (CRFs) can be successfully leveraged in 
limited contexts [14]. 

Extracting a single step or operation 
While a seemingly intuitive concept, what constitutes a 
single operation in a tutorial is rarely defined in 
previous research. However, how one defines a single 
operation has important implications for developing 
systems that can extract individual instructions. 

Consider the following example: 

“Add a new transparent layer named Vignette.” (G) 

On the face of it, this appears to be a straightforward 
operation to perform. However, deconstruction of this 
directive into a set of discrete operations will vary 

“With your text highlighted, 
click the ‘B’ icon.” (W) 

“Make sure that the 'x' is 
selected, if not then please 
click the icon to rectify the 
problem.” (I)  

 

Figure 3: Tutorial authors often 
describe UI widgets visually, 
rather than referring to them 
using their official names. In the 
top example ‘B’ refers to a button 
in Microsoft Word’s interface that 
toggles the bold text style. 
Likewise, the ‘x’ in the lower 
example corresponds to a choice 
in Inkscape’s color pallet that 
removes an object’s background 
fill color. 



 

depending on the goals of the system. If the goal is to 
generate a guided help system [11], then the extracted 
operations should probably characterize each action 
that a user is expected to perform in the interface. See 
Figure 4 for one interpretation of how this directive can 
be interpreted. 

Conversely, if the goal is to automate instructions via 
something akin to executable scripts [10], then this 
directive may correspond to a single function in the 
application’s programming interface (API) – indeed, 
GIMP’s macro API provides a fully-parameterized 
method for creating new layers in one step. 

Unfortunately, tutorials often contain a mix of 
instruction granularities, utilizing high-level expressions 
for common operations (often located at the beginning 
of a tutorial [1]), while expressing later operations in 
more detail. As noted earlier, Branavan et al. used 
reinforcement learning to map high-level instructions to 
low-level steps [1], and were able to correctly form 
these associations in 64% of test cases. Improving 
these results remains important future research. 

As work progresses in this space, it is important to 
explicitly state assumptions about what levels of 
granularity one hopes to achieve when extracting 
operations from texts. 

Command parameters 
The correct interpretation of tutorial steps requires the 
extraction and interpretation of commands, together 
with their parameters. Notably, many parameter values 
are implied, underdefined, or described with 
constraints, leading to greater variability in how these 
values are expressed. As a result, F1 scores for 

extracting parameter values tend to be lower in the 
literature. For example, Laput et al. [10] report an F1 
score of 0.97 for detecting menu items, with an F1 
score of 0.36 for detecting command parameters. 

In many tasks, there is some flexibility in deciding on 
parameter values, leading authors to intentionally 
underspecify the value of parameters, as this example 
illustrates: 

“Set its mode to Screen and adjust Opacity to 
suit.” (G) 

In other cases, constraints are attached to these 
underspecified parameter recommendations: 

“Feather the selection by 75~85 pixels or so.” (G) 

Constraints on desired parameter values can also be 
quite complex:  

“Set your foreground color to a slightly darker 
and muted blue than you used for the 
background.” (G) 

“You can use any size you wish as long as you 
keep that ratio.” (I) 

Finally, authors may choose to indicate the desired 
output of an operation, leaving the exact parameter 
settings to be discovered through trial and error. The 
following example, and those of Figure 5, illustrates this 
case:  

“Crank down the opacity of the upper layer so 
that you can see both images.” (G) 

 “Increase the stroke width 
until you see a nice 
smooth outline.” (I) 

 “Play around with the other 
settings until you get 
something that looks like a 
snowflake” (G) 

 

 

 

Figure 5: Example tutorial 
phrases where parameters are 
specified by the effect that they 
have on the resultant document. 
These effects are often expressed 
as purpose clauses, which we 
describe later in the document. 

 

Figure 4: The 4 manual 
operations that a user must 
perform in GIMP’s interface to 
perform the same task as GIMP’s 
single ‘gimp-layer-new’ macro 
function. 

In GIMP’s main menu: 
1. Click the “Layers 䳑 New  
    Layer” menu item. 
 

In the “New Layer” dialog: 
2. Enter “Vignette” as the  
    name of the layer. 
3. Select “Transparency” as 
    the background fill type. 
4. Click “Ok” 



 

These examples define numerous challenges for 
extracting parameter values for forms-based input, but 
there is a corresponding set of related problems for 
specifying direct manipulation operations. We describe 
these challenges next. 

Spatial reasoning 
User interfaces are two- (and sometimes three-) 
dimensional, and often employ direct manipulation as 
an interaction technique. As such, tutorials often make 
use of spatial information when describing processes, 
and can include directives that reference absolute and 
relative spatial coordinates. Examples of these types of 
instructions can be found below, and in Figure 6: 

 “Click your left mouse button about half 
way up the page, and type a title.” (W) 

These operations can be challenging to interpret, 
requiring knowledge of the spatial relationships 
between components of the interface, as well as the 
capacity to do spatial reasoning. 

Constraining action through purpose clauses 
Tutorial instructions often contain purpose clauses [4], 
which state or imply the goal of the operation. These 
clauses may lead readers to infer additional constraints 
on their actions, thus posing a serious challenge for 
machine interpretation. Consider the following example, 
also noted in the introduction: 

 “Place it underneath the original text, as if it 
were a reflection.” (G) 

Here the previous challenges in interpreting spatial 
instructions apply, but correct execution of the 

instruction requires consideration of the purpose clause 
“as if it were a reflection”. This clause serves to 
constrain the position of the object in a manner that 
can be discerned only if one understands the concept of 
reflection. Additional examples of instructions 
containing purpose clauses are listed in Figure 5 on the 
preceding page. 

Sequencing steps  
Tutorials contain steps that must be performed in the 
correct sequence in order to complete the stated task. 
However, tutorials can vary in how these steps are 
communicated, and what must be done versus what is 
optional. 

Conditionals 
The simplest deviation from a sequential workflow, and 
the case most frequently discussed in previous work 
(e.g., [2,11]), is where one step or operation is 
conditioned on some criteria. For example: 

“If yours says DOCX instead of DOTX then 
click on the Save as Type box to see the file 
type menu.” (W) 

“If you plan on printing your card, make 
the X and Y resolutions at 300dpi.”  (G) 

The examples (and those of Figure 7) highlight two 
important classes of conditional steps: The first 
example is conditioned on document state, and could 
conceivably be evaluated by an automated system. 
Conversely, the second example is an optional step, 
and is inherently problematic for automation. The 
distinction between the classes has not been discussed 
in past work.  

“Just drag the mouse/pen 
along the bottom of the 
curves tool.” (G) 

“Duplicate this setup and 
move that tile above this 
one, remembering to snap it 
to grid.” (I) 

 “Drag the arrow to about the 
third line.” (G)  

Figure 6: Example tutorial 
phrases where spatial reasoning 
is required for correct 
interpretation. 

“If using GIMP for 
Windows, you'll have to 
right-click on the destination 
button and select the 
Foreground.” (G) 

“You might want to 
decrease the opacity of this 
layer.” (I) 

 

 

Figure 7: Examples of conditioned 
tutorial steps. The first example 
depends on system state, and 
may be evaluated automatically. 
The second example depicts an 
optional step that must be 
decided by a human operator. 



 

Alternatives 
Similar to conditionals, tutorials often present a series of 
alternative methods for achieving a stated goal. These 
are not conditionals, but, rather, represent distinct 
means of completing the same task or subtask.  

Alternatives are potentially problematic for interpretation 
because systems must accurately recognize and 
distinguish each of the alternatives as separate entities. 
Typically, alternatives appear as self-contained sections 
of a tutorial, but are often foreshadowed by short 
indicator phrases. For example:  

“Although you get those commands 
automatically, you can customize the Quick 
Access Toolbar, and there are three ways 
to do this.” (W) 

Prior work has largely ignored the challenges 
posed in identifying and segmenting alternatives. 

Anti-patterns 
Finally, tutorials occasionally contain steps that are 
provided as counterexamples, or anti-patterns. These 
are often offered as warnings, which must be heeded in 
order to correctly perform the tutorial. The following 
example, and those of Figure 8, fit these criteria: 

“Whatever you do, don’t create a hanging 
indent by pressing the space key to create 
spaces, or even by tabbing across the page.” 
(W) 

These anti-patterns are troublesome in that, like valid 
operations, they often explicitly name actions, targets, 
and parameters in their text. Systems that specifically 

pick out such features (e.g., [3,5,6,10,11]) may make 
the mistake of performing or recommending the precise 
errors that the tutorial author is warning against. While 
past work has not discussed anti-patterns, related 
research areas within NLP, such as sentiment analysis, 
suggest possible solutions or strategies for recognizing 
and reasoning about these steps. 

Handling non-procedural text 
Tutorials can contain rich narratives with motivations, 
background material, theory, best practices, and a host 
of other non-procedural material. To correctly segment 
tutorial steps, a system must be able to distinguish 
between procedural and non-procedural content. In 
many cases, this classification is straightforward – 
procedural content can be recognized by locating 
sentences that mention specific user interface widgets, 
actions, or settings [3,5,10,11]. However, there are a 
few common scenarios where this strategy breaks down. 
Consider the following example, as well as those from 
Figure 9, in which authors provide a theoretical 
background for complex operations:  

“Unsharp mask works by increasing the 
contrast between edges in the photos (areas of 
color or tonal transition), making them appear 
sharper.” (G)  

These examples are remarkably similar to steps that 
might be performed by the reader, and could cause 
potential confusion in an automated system. 

A similar difficulty arises with a type of non-procedural 
content that Lau et al. call verification steps [11]. 
Verification steps are those that describe the current or 
future state of the document or system so that the 

“Do not deselect them after 
duplication.” (I) 

“There is a problem, 
however, if you try to scale 
this image.” (G) 

 

 

Figure 8: Examples of anti-
patterns or warnings found in 
online tutorials. Anti-patterns are 
problematic because they 
resemble regular tutorial steps in 
that they mention specific 
commands, but their actions 
should be avoided rather than 
performed. 

“The layer mask works in 
such a way that all black 
parts of the mask will become 
transparent parts of the 
layer.” (G)  

“The threshold plug-in 
works by dividing the image 
into two parts, dark and light, 
producing a 2 color image.” 
(G) 
 

Figure 9: Examples of non-
procedural tutorial content that 
provides background information, 
but may be confused for tutorial 
steps. 



 

reader knows what to expect. As the following example 
demonstrates, verification steps also have the potential 
to be confused for procedural steps: 

”You will see the image go to black and white, 
with everything to the left of the selection 
going to black, and everything in the 
selection going to white.” (G) 

Finally, tutorial authors often begin or end passages by 
summarizing the operations that will, or have been, 
performed. For example: 

 “We'll be adding two more layers.” (G) 

This content is not meant to be executed, but may easily 
be confused with the tutorial's actual procedural steps. If 
confused for procedural content, then it may result in a 
given step being performed more than once. Additional 
examples are listed in Figure 10. 

In summary, tutorial passages that provide background 
or theory, together with verification steps and summary 
sections, can often be confused as part of the tutorial 
procedure, posing challenges to automated systems. 

Discussion 
As we argued in the Introduction, online instructional 
materials contain a wealth of information; from the 
actual procedural steps they contain, to clues about the 
target audience, the amount of creativity or input 
expected of users, or common errors or misperceptions 
that are likely to occur. 

In our work in this area, we have found that one of the 
most pressing, overarching problems to solve is that of 

precisely defining and characterizing the information 
content found in these tutorials. For example, even 
defining what is meant by a tutorial step is a challenging 
endeavor. A reliable, valid coding scheme is needed to 
annotate steps and other tutorial content, in order to 
enable subsequent machine reasoning. This problem is 
at the root of many of the challenges described above, 
and is essential to solve in order to make meaningful 
progress in this space. Most immediately, a coding 
scheme would enable the creation of labeled training 
sets for further research in supervised learning 
approaches. 

The availability of a coding scheme could also reduce our 
dependency on machine learning for mining data from 
tutorials – a well-designed coding scheme could guide 
the establishment of a semantic markup format for web 
tutorials. This markup format would provide machine-
readable cues for extracting steps, commands, 
parameters and other items of interest, therefore 
mitigating many of the challenges presented in this 
paper. There is precedent for this strategy: Microformats 
and Microdata are two standardized semantic markup 
extensions for HTML, and both conventions include 
methods for describing cooking recipes [13,15]. Cooking 
recipes are similar to tutorials in that they prescribe a 
series of steps to be taken.  

In short, paralleling early work in NLP, there is a need to 
develop more standardized ways for labeling tutorial 
content, enabling the creation of corpora for training and 
research, and perhaps offering other ancillary uses. 

Conclusion 
In this paper, we outlined many of the challenges posed 
to systems that seek to mine procedural information 

“On the background layer, 
we'll apply a gradient.” (G) 

“Step 1: Lower the 
Saturation” (G) 
 

Figure 10: Examples of passages 
that summarize the operations 
that are about to be prescribed. 
Such topic phrases can easily be 
mistaken for actual procedural 
content, and could lead to the 
duplication of some tutorial steps. 



 

from written software tutorials. In addition to common 
NLP challenges, we argued that there are complex issues 
surrounding the interpretation of individual steps, the 
sequencing of sets of steps, as well as identifying which 
parts of a tutorial text provide actual procedural 
information. Thus, while we doubt that the full machine 
automation of general tutorials is tractable in the near 
future, we strongly believe that tutorials are a valuable 
resource to be mined and analyzed using automated 
techniques. Moreover, by acknowledging these 
challenges, we identify new targets and opportunities 
that may yield interesting applications distinct from 
those explored in past work.  

References 
[1] Branavan, S.R.K., Zettlemoyer, L.S., and Barzilay, 

R. Reading between the lines: learning to map high-
level instructions to commands. In Proc. ACL  ’10, 
Association for Computational Linguistics (2010), 
1268–1277. 

[2] Brasser, M. and Linden, K.V. Automatically Eliciting 
Task Models from Written Task Narratives. In C. 
Kolski and J. Vanderdonckt, eds., Computer-Aided 
Design of User Interfaces III. Springer Netherlands, 
2002, 83–90. 

[3] Ekstrand, M., Li, W., Grossman, T., Matejka, J., and 
Fitzmaurice, G. Searching for software learning 
resources using application context. In Proc. UIST  
’11, ACM (2011), 195–204. 

[4] Di Eugenio, B. Understanding natural language 
instructions: the case of purpose clauses. In Proc. 
ACL  ’92, Association for Computational Linguistics 
(1992), 120–127. 

[5] Fourney, A., Lafreniere, B., Mann, R., and Terry, M. 
“Then click ok!”: extracting references to interface 

elements in online documentation. In Proc. CHI  ’12, 
ACM (2012), 35–38. 

[6] Fourney, A., Mann, R., and Terry, M. Query-feature 
Graphs: Bridging User Vocabulary and System 
Functionality. In Proc. UIST  ’11, ACM (2011), 207–
216. 

[7] Han, X., Sun, L., and Zhao, J. Collective Entity 
Linking in Web Text: A Graph-based Method. In 
Proc. SIGIR  ’11, ACM (2011), 765–774. 

[8] Jurafsky, D. and Martin, J.H. Section 21.7: 
Coreference Resolution. In Speech and Language 
Processing: An Introduction to Natural Language 
Processing, Computational Linguistics, and Speech 
Recognition. Pearson Prentice Hall, 2009, 710–718. 

[9] Ko, A. Mining whining in support forums with 
frictionary. In Proc. CHI EA  ’12, ACM (2012), 191–
200. 

[10] Laput, G., Adar, E., Dontcheva, M., and Li, W. 
Tutorial-based interfaces for cloud-enabled 
applications. In Proc. UIST  ’12, ACM (2012), 113–
122. 

[11] Lau, T., Drews, C., and Nichols, J. Interpreting 
Written How-To Instructions. In Proc. IJCAI’09, 
(2009), 1433–1438. 

[12] McDonald, R., Crammer, K., and Pereira, F. Flexible 
text segmentation with structured multilabel 
classification. In Proc. HLT  ’05, Association for 
Computational Linguistics (2005), 987–994. 

[13] microformats.org. hRecipe 0.22. 2013. 
http://microformats.org/wiki/hRecipe. 

[14] Pedemonte, P., Mahmud, J., and Lau, T. Towards 
automatic functional test execution. In Proc. IUI  
’12, ACM (2012), 227–236. 

[15] schema.org. Thing > CreativeWork > Recipe. nd. 
http://schema.org/Recipe. 

 


