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Abstract

Gesture-based interaction has long been seen as a natural means of input for
electronic presentation systems; however, gesture-based presentation systems have
not been evaluated in real-world contexts, and the implications of this interaction
modality are not known. This thesis describes the design and evaluation of Mae-
stro, a gesture-based presentation system which was developed to explore these
issues. This work is presented in two parts. The first part describes Maestro’s
design, which was informed by a small observational study of people giving talks;
and Maestro’s evaluation, which involved a two week field study where Maestro
was used for lecturing to a class of approximately 100 students. The observational
study revealed that presenters regularly gesture towards the content of their slides.
As such, Maestro supports several gestures which operate directly on slide content
(e.g., pointing to a bullet causes it to be highlighted). The field study confirmed
that audience members value these content-centric gestures. Conversely, the use
of gestures for navigating slides is perceived to be less efficient than the use of a
remote. Additionally, gestural input was found to result in a number of unexpected
side effects which may hamper the presenter’s ability to fully engage the audience.

The second part of the thesis presents a gesture recognizer based on discrete
hidden Markov models (DHMMs). Here, the contributions lie in presenting a fea-
ture set and a factorization of the standard DHMM observation distribution, which
allows modeling of a wide range of gestures (e.g., both one-handed and bimanual
gestures), but which uses few modeling parameters. To establish the overall robust-
ness and accuracy of the recognition system, five new users and one expert were
asked to perform ten instances of each gesture. The system accurately recognized
85% of gestures for new users, increasing to 96% for the expert user. In both cases,
false positives accounted for fewer than 4% of all detections. These error rates
compare favourably to those of similar systems.
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Chapter 1

Introduction

Electronic presentation systems, such as Microsoft PowerPoint [37], are designed to
enhance one’s ability to effectively communicate to a group of individuals. These
systems have become invaluable tools for delivering presentations in a professional
setting. Ian Parker, of The New Yorker, has reported that an average of 30 million
presentations are given each day [43]. While this statistic is difficult to indepen-
dently verify, Microsoft has reported that PowerPoint has an installed user-base of
500 million individuals [36]. In either case, it is clear that electronic presentation
software plays an important role in the lives of millions of individuals.

Numerous research efforts have explored ways of improving presentation tech-
nology. For example, Palette [40] provides a tangible interface to presentations,
enabling presenters to use barcoded cue cards to randomly access slides in a pre-
sentation; Slithy [70] explores how animations can be better utilized during talks;
and MultiPresenter [26] explores how presentation software can leverage multiple
projectors that are often available in large lecture halls. In this document, we are
most concerned with improving how presenters interact with presentation software.

Electronic presentation systems are considered by many to be ideal candidates
for gesture-based interaction. This is, in part, because presenters habitually gesture
to the presentation screen while speaking [5, 40, 26]. Indeed, gesture-based input
promises to seamlessly integrate with existing presentation practices. Baudel et al.
note that, when using gestures to control a presentation, “most gestures are actually
performed at the limit of consciousness”, so that commands can be issued without
much effort [2]. Similarly, Sukthankar et al. suggest that this form of interaction
feels natural because it treats the computer “as if it were a member of the audience”
[55]. Furthermore, research by Cao et al. found that a gestural interface encourages
presenters to adopt a “more personalized, humanized, story-telling style”, leading
to more interactive and engaging presentations [5].
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1.1 Open Issues

The literature contains many examples of gesture-based presentation systems [59,
54, 2, 7, 28]. While these systems demonstrate the possibility of gesture-based
input to a slideshow, they have not been evaluated in real-world contexts. In fact,
previous research often fails to consider how audiences respond to gestural control
of presentations. Instead, evaluations have typically focused on the accuracy of
gesture recognition (e.g., [2, 28]) rather than on the overall usability and usefulness
of the system. It is therefore unknown if the real-world deployment of gesture-based
presentation systems will elicit the advantages predicted in the literature.

Additionally, previous gesture-based presentation systems have often grafted
gestural control onto existing presentation software, such as PowerPoint [28] or
HyperCard [2]. In these cases, gestures are typically relegated to common navi-
gational commands such as moving between slides. These navigation gestures are
independent of slide content, and are often performed between talking points rather
than co-occurring with speech. This can be contrasted with the gestures that spon-
taneously occur during a presentation; spontaneous gestures serve communicative
purposes, co-occur with speech, and tend to be highly contextualized by the con-
tent and layout of the slides. Thus, while these natural gestures are often offered
as motivations for gesture-based systems, they are qualitatively different than the
navigation gestures which are actually implemented by existing systems. This dis-
tinction has received little attention in prior work, and suggests the exploration of
interactions that are more heavily contextualized by slide content.

1.2 The Presentation Maestro

This thesis critically examines gesture-based input in the context of electronic pre-
sentations. To explore the aforementioned open issues, we designed, implemented,
and evaluated Maestro, a prototype gesture-based presentation system. In keep-
ing with similar systems in the literature, Maestro augments a presenter’s “nat-
ural” repertoire of gestures with gestures used to navigate a presentation (e.g.,
next/previous slide). However, Maestro also allows users to interact directly with
the content of their slideshows using gestures similar to those that have been ob-
served spontaneously occurring during PowerPoint presentations. Some of these
interactions include having bullet points automatically highlight in response to de-
ictic (pointing) gestures; allowing presenters to zoom into figures within slides;
allowing presenters to expand and collapse individual elements within a hierarchal
bullet list; and allowing presenters to follow hyperlinks embedded in text.

An important aspect of Maestro’s design is that hand gestures are detected
using computer vision. Consequently, the system requires only the addition of a
low-cost web camera and a pair of color-contrasted gloves to enable gesture-based
interaction. This all but ensures that the technology can be made widely available.
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Moreover, portable data projectors and powerful laptop computers (incorporating
built-in web cameras) result in presentation equipment which is highly portable;
this allows presenters to carry their equipment from venue to venue, and can be
contrasted with related technologies such as large-scale touch sensitive surfaces.
The latter are high-cost, less-widely deployed, and far less portable. The advantages
of a vision-based system are very important for user acceptability, since presenters
are less likely to learn the nuances of a gesture-based presentation system if they
are frequently faced with presenting in venues where the technology is unavailable
[39].

While the ubiquity of low-cost web cameras makes a computer vision-based
approach attractive, relying on vision alone imposes many design challenges. Most
importantly, a vision-based approach significantly complicates the recognition of
gestures. Cameras stream observations which include any and all hand motion.
A gestural interface must be able to “spot” meaningful gestures in these longer
motion sequences. This issue is known as gesture segmentation, or gesture spotting
[28], and is similar to keyword spotting in speech recognition. In keyword spotting,
a system must be able to detect the utterance of a keyword or phrase amidst
unconstrained speech and non-speech background noise. We note that issues related
to gesture spotting do not arise when gestures are performed on touch sensitive
surfaces, since the onset and release of contact with the surface clearly identifies
which motions are intended as gestures.

1.3 Primary Contributions

Importantly, Maestro was evaluated during a two week classroom deployment study,
in which one of the research supervisors used the system for lecturing to a class of
approximately 100 undergraduate students. These lectures were observed by the
author of this document, who attended the lectures as an audience member. The
class was also asked to provide open-ended feedback, and to complete a compre-
hensive questionnaire regarding the use of Maestro in the classroom. To the best of
our knowledge, this study constitutes the first real-world, long-term evaluation of
such a system. It also includes audience feedback to an extent never before realized
in previous related research.

The results of Maestro’s evaluation suggest that gestural input can have a pos-
itive impact on presentations; in particular, our results add support to the notion
that gesture-based interaction leads to interactive and engaging presentations – a
finding first reported by Cao et al. in [5]. However, our findings also suggest that
gesture-based interaction can reduce the perceived efficiency of a presentation, and
can noticeably alter the dynamics of a presentation in ways that are not always de-
sirable. In particular, the requirement that the presentation be entirely controlled
through gestures tends to anchor the presenter near the projection screen, thereby
limiting his or her mobility. Additionally, the interface encourages the presenter to
face the projection screen rather than the audience, thereby leading the presenter
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to miss audience questions and feedback. The presenter’s close proximity to the
screen also requires the speaker to noticeably back away from the screen to view
slides in their entirety; this interrupts the presentation, and gives the impression
that the presenter is unprepared. Finally, when gestures are sensed using computer
vision, the presenter must be cautious when entering the volume of space directly
in front of the screen; lest he risk gestures being falsely detected. We refer to this
area of space as the “no-fly zone”.

In addition to the aforementioned findings, Maestro’s evaluation suggests that
certain classes of gestures may be more beneficial than others: As noted above,
Maestro makes use of two classes of gestures; those that enable navigation of the
presentation (e.g., moving between slides), and those that allow presenters to in-
teract with slide content (e.g., enabling content to respond to pointing gestures).
While past research has focused on using gestures for navigation, our findings sug-
gest that content-centric gestures are well received by both presenters and audience
members alike; but, the benefits of navigation gestures are less clear. These findings
were unexpected and have not been previously reported in the literature.

1.4 Secondary Contributions

Maestro was developed as a research tool with the expressed purpose of quickly and
inexpensively exploring the implications of gesture-based interactions with presen-
tations. The original gesture spotting approach used by Maestro (including in the
deployment study) was heuristic in nature, and relied on manually generated ges-
ture templates. While crude, this “ad-hoc” approach supported rapid prototyping,
allowing us to quickly explore a heterogeneous space of gestures when designing
Maestro’s gesture language. For example, we experimented with both one-handed
and bimanual gestures. While the ad-hoc recognizer functions quite well in prac-
tice, it is not easily generalized to cope with new gestures. In fact, adding new
gestures (or improving the recognition of existing gestures) requires new heuristics
to be developed on a case-by-case basis. This inflexibility lead us to develop a more
principled gesture recognizer upon finalizing Maestro’s design.

While Maestro’s more principled recognizer uses standard discrete hidden Markov
models (DHMMs) to represent gestures, our contributions lie in developing a fea-
ture set that allows modeling of both one and two-handed gestures, and which
directly models missing observations (e.g. cases where noise or occlusion prevents
the hands from being detected). Modeling missing observations is important not
only for reasons of robustness, but also because some gestures are more likely to
result in missing data (e.g. occlusions) than others; this extra information is useful
in guiding gesture recognition. Moreover, these features are carefully engineered
so that the DHMM’s observation distributions can be easily factored using condi-
tional independence; this greatly reduces the number of parameters that need to
be learned by the system.
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Since the DHMM-based recognizer was developed only after verifying Maestro’s
design in the classroom evaluation, we present results from a controlled experiment
which directly compares the original ad-hoc recognizer to the DHMM-based rec-
ognizer. The results of this experiment reveal that both recognizers have similar
recognition characteristics. This suggests that the results of Maestro’s classroom
evaluation are applicable to a version of Maestro which uses a gesture recognizer
that is more representative to the state-of-the-art in this field.

1.5 Outline

This document is divided into two distinct parts mirroring the two distinct con-
tributions claimed above. Part I of this thesis begins with a literature review of
gesture-based presentation systems. We then present an observational study of
people giving talks. This observational study motivates many aspects of Maestro’s
design, which we describe in Chapter 4. Following the description of Maestro’s
design, we present the results of Maestro’s classroom evaluation.

In Part II of this document, we present a more principled gesture recognizer,
as described above. Part II begins by reviewing discrete hidden Markov models,
followed by a description of the DHMMs used by Maestro. In doing so, we present
a feature set and an observation model which captures many important aspects of
Maestro’s gestures while having few parameters. We then describe the process of
spotting gestures using DHMMs. Part II concludes by comparing the recognition
results of the DHMM-based approach to those of Maestro’s original ad-hoc gesture
recognizer.

Finally, the entire thesis concludes in Chapter 9, with a summary of the findings
and a discussion of future research possibilities.
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Chapter 2

Gestural Interfaces for
Presentation Software

In this chapter, we review research into the use of hand-gestures for controlling pre-
sentations. Here, the seminal research was conducted by Baudel and Beaudouin-
Lafon who outlined many of the unique challenges in enabling gesture-based in-
teraction in a presentation context. This important research is described in great
detail in Section 2.1. We then review more recent research by Cao et al. in Section
2.2, and conclude with a survey of computer vision-based approaches which enable
presenters to use hand gestures to interact with slideshows.

2.1 Charade

The Charade system, developed by Thomas Baudel and Michel Beaudouin-Lafon,
is one of the earliest examples of a presentation system controlled by hand gestures
[2]. This system allowed presenters to control a HyperCard presentation using a
DataGlove, (also known as a “wired glove”). A DataGlove is a glove that has been
instrumented with sensors which relay the joint-angles for each of the hand’s finger
joints. When coupled with a Polhemus tracker, the hand’s location in 3D space
is also measurable. Using this technology, Charade allows presenters to linearly
navigate a presentation, access a table of contents, and highlight or annotate areas
of each slide with free-hand drawings. To recognize gestures, Charade uses a
modified Rubine recognizer, which achieves an accuracy of 70% with new users,
and 90-98% with expert users. 1

In describing the gestures used by Charade, Baudel and Beaudouin-Lafon
discuss the problem of segmenting motion into discrete gestures. In regards to
gesture segmentation, DataGloves suffer from the same limitations as vision-based
approaches; these systems record all hand motion, not just the motion that is
intended as a gesture. In order to resolve this challenge, the Charade system

1These error rates are similar to those of Maestro, as reported in Chapter 8.
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requires that presenters begin and end each gesture with the hands in a “tense”
posture, such as a clenched fist, or an open hand with the fingers stretched widely
apart. These tense hand postures are said to be “non-usual, but not unnatural”.
Additionally, to avoid user fatigue, the gestures are designed so that they can
be performed quickly without requiring much accuracy on the part of the users.
Gestures that are most frequently used, such as next and previous slide, are assigned
the quickest, most natural gestures. To limit recognition errors, Charade ignores
hand motion that does not occur within an “active space” directly in front of the
screen.

Baudel and Beaudouin-Lafon also discuss the challenge of providing affordances
and feedback in a gesture-based system. They note that “good feedback is manda-
tory because gestural commands are not self-revealing”. The authors suggest that
three types of feedback be provided: syntactic feedback, which reveals the state of
the gesture recognizer 2; semantic feedback, which conveys the effect of a gesture
command; and command history feedback which reveals the past sequence of com-
mands. The command history allows users to recover from cases where gestures
are falsely detected. In this last case, a general “undo” command is essential.

In discussing both the challenge of gesture spotting and the challenge of pro-
viding user feedback, Baudel and Beaudouin-Lafon’s work on Charade is perhaps
the most thorough description of a gesture-based presentation system in the liter-
ature. Nonetheless, this research left many issues unresolved. Some of these open
problems are described below:

• Real-world evaluation
Charade was reportedly used by two trained users to present sample presen-
tations to an audience. The authors described the purpose of the trial as “to
determine whether the application was useable in a real setting”. However,
the only results reported from this trial were the error rates, along with the
observation that most errors were noticed immediately (presumably by the
presenter). Additionally, there was no mention of the audience’s size or of the
duration of these presentations. A far more thorough real-world evaluation is
thus warranted.

• The Audience
There are two distinct “users” who benefit from presentation software: the
presenter, and the audience. The usability of a presentation system depends
both on the presenter’s ability to effectively command the presentation, and
the audience’s ability to effectively interpret or comprehend the presentation
(e.g., without being distracted by the interface). The literature describing
Charade largely ignores the audience. For example, Baudel and Beaudouin-
Lafon describe the need to provide feedback to the presenter, but they do not

2The authors suggest that syntactic feedback be communicated by changing the shape of the
cursors. This is the strategy that Maestro uses.
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mention if the audience is distracted by this feedback. Similarly, the authors
mention that the feedback allows presenters to recognize and correct errors
in “one or two gestures”, but they do not mention how these errors affect the
audience’s perception of the presentation.

• Interacting with content
In describing the advantages of gesture-based interaction, Baudel and Beaudouin-
Lafon mention that such interfaces allow direct manipulation. However, the
gestures used by Charade are largely context-independent; the gestures ma-
nipulate the presentation slide deck (e.g., changing slides), not the contents
of the individual slides. We find gesture-enabled direct manipulation to be a
compelling possibility worthy of additional research.

2.2 A Comparison of Presentation Control Modal-

ities

While Baudel and Beaudouin-Lafon’s work on Charade focused primarily on the
needs of the presenter, a study conducted by Cao et al. explored how audiences
respond to gesture-based control of a presentation [5]. In this Wizard of Oz study,
six individuals were asked to present talks in front of test audiences. For each audi-
ence, the presenters were asked to control the presentation using either a standard
keyboard and mouse, a laser pointer equipped with a button 3, or hand gestures
and a touch-sensitive screen. Since this was a Wizard of Oz study, neither the
bare-handed interaction, nor the laser-pointer system were actually implemented.
Instead, one of the experimenters controlled the presentation in response to actions
performed by the presenters. After each presentation, audience members were asked
to rate the presentation for clearness, efficiency and attractiveness using a 7-point
Likert scale. Hand gesture interaction consistently received the highest score in
all categories, beating the laser pointer and the keyboard by a wide margin: 70%
of the audience and 83% of presenters stated that they preferred the use of hand
gestures.

Despite the positive results from the audience questionnaire, the researchers
found both advantages and disadvantages to gesture-based interaction. Specifically,
this input modality was found to be natural and easy to use, and was found to
encourage the increased use of body language; however, presenters tended to remain
near the screen rather than walk around, and presenters occasionally occluded the
audience’s view of the screen. In addition to these findings, the researchers reported
that gesture-based interaction requires an easy “undo” operation, and a fast “next

3Laser pointer systems use computer vision techniques to track the laser dot on the projection
screen in order to direct a cursor. Such systems have been explored by numerous researchers
[55, 54, 42, 6, 25]
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slide” command. These latter recommendations mirror those made by Baudel and
Beaudouin-Lafon in their work on Charade.

While Cao’s study provides evidence for the benefits of gesture-based interac-
tion with presentation systems, a number of important research questions remain.
For example, it is unclear if (or how) the Wizard of Oz study simulated recognition
errors which are bound to occur – even if only rarely. These details are important
if we are to understand how audiences respond to such errors. The study also pre-
sumed a touch-based interface, while many gesture-based systems rely on computer
vision techniques (see Section 2.3). It is thus unclear how use of computer vision
affects presentation dynamics, especially since it is more likely to generate recog-
nition errors. Most importantly, the study was also limited in scale: gesture-based
interaction was evaluated for a total of six talks, each of which was only five minutes
in duration. As such, it is unknown how well these systems fare in more regular,
day-to-day use.

2.3 Single-camera vision-based recognition of hand

gestures for controlling presentations

In the previous sections we described Charade, which relied on a DataGlove for
sensing hand gestures; and Cao’s observational study, which assumed the use of
a large touch-sensitive display. In both cases, the authors suggested computer
vision as an alternative method for sensing gestures. In particular, Baudel and
Beaudouin-Lafon complained that the DataGlove was a major limiting factor in
the Charade system, since the DataGlove was too large to properly fit the hands
of two participants of their system’s small user study [2].

More than 15 years have passed since Charade was first developed. Inexpensive
web cameras are now ubiquitous, and modern computers have sufficient process-
ing capabilities to make computer vision a viable alternative for detecting hand
gestures. Vision-based approaches, employing the use of a single camera, are ad-
vantageous on account of their wide availability, low cost, and high portability.
These benefits should not be undervalued; in evaluating the benefits of interactive
whiteboards (a type of large touch sensitive-displays) in schools, Levy reports that
a teacher’s proficiency and creativity in using the display depends on “easy and
frequent” access to the technology in order to support experimentation [29]. Simi-
larly, Smith et al. report that “there is little incentive for secondary school teachers
to plan a lesson with the (interactive whiteboard) if they are faced with repeating
the same lesson in a room without the board” [52]. The low cost and portability
of a vision-based approach ensures that presenters can acquire and easily transport
their presentation equipment from venue to venue.

While the ubiquity of low-cost web cameras makes computer vision-based ap-
proaches attractive, such systems are often challenging to construct because they
must be able to spot gestures embedded within sequences of more general hand
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motion. This is especially challenging in a presentation environment because pre-
senters often use a great deal of gesticulation, but only occasionally issue gestural
commands. The literature describes a number of computer vision-based gestural
presentation systems, each of which can be categorized according to the approach
used for gesture segmentation. We describe each in turn.

2.3.1 Gesture segmentation by “dwelling”

Perhaps the simplest approach to segmenting gestures is to require that all gestures
begin or end with a sustained period of zero velocity. This strategy is especially
common with deictic gestures, where commands can be issued by pointing to a
target for some length of time. This gesture is known as dwell clicking and can
be used to emulate a one-button mouse. The approach is commonly utilized in
gaze interfaces which allow users to control a computer using eye movement [17].
There are numerous presentation systems where dwell clicking gestures are used.
For example, Sukthankar et al. developed a system where users can navigate slides,
and annotate slides with freehand drawings [55] by pointing to active regions on
the screen with an outstretched finger. To activate a region, users must point to
the target for approximately half of a second. A similar presentation system was
also described by Noi Sukaviriya et al. in [53].

The FreeHandPresent system by Von Hardenberg and Bernard demonstrates
how dwell clicking can be augmented to differentiate between several hand postures
[59]. Overall, their work focused on the problem of detecting hands in cluttered
images, and did not focus much on the design of a presentation system. FreeHand-
Present ’s interface is very limited in that only three commands are available to the
presenter: extending two fingers instructs the presentation to advance to the next
slide; three outstretched fingers signals the system to return to the previous slide;
and five outstretched fingers opens a “slide menu” which allows presenters random
access to any slide. As with simple dwell clicking, gestures were signaled by holding
the hand still, with a particular posture, for an unspecified length of time (presum-
ably between 0.5 seconds and 1 second). A similar system was described by Licsar
and Sziranyi in [30], who note that more complex gestures can be synthesized by
requiring that users perform a sequence of static hand postures in order to step
through a finite state machine (FSM). In this sense, a gesture is any sequence of
static hand postures that satisfies the grammar defined by the FSM.

Each of the aforementioned systems uses dwelling to initiate the recognition of a
static hand posture. It is also possible to use dwelling to initiate the recognition of a
dynamic gesture, in which the gesture is performed by moving the hand along some
path through space. This is the approach taken by Yoon et al. in [68], where HMMs
are used to recognize dynamic gestures whose start and endpoints are indicated
by dwelling. While they did not incorporate their approach into an electronic
presentation system, their work is certainly worth mentioning.

While it is clear that “dwelling” is an effective means for gesture segmentation,
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it suffers one major drawback: it is difficult to set a satisfactory minimum duration
for the dwelling. If the dwell duration is set too high, then the system feels less
responsive, and users can become impatient. When experimenting with dwelling in
Maestro, we noticed that it is difficult to hold the hand still while talking, as this
goes against the natural tendency to gesticulate. Consequently, users often stop
talking while waiting for the system to respond to the dwell click gestures. This
noticably interrupts the flow of the presentation. Unfortunately, responding to this
problem by lowering the dwell duration leads to the “Midas touch” problem [17],
where gestures may inadvertently be activated whenever, and wherever, the hands
rest. It is quite difficult to achieve an appropriate balance.

2.3.2 Gesture segmentation by electronic signaling

Another common approach to addressing the gesture segmentation problem is to
require the user to depress a wireless button, or to otherwise electronically signal,
the onset or termination of every gesture. There are several commercial products
that use this strategy for gesture segmentation. GestureStorm, produced by Cyber-
net Systems, allows television network meteorologists to interact with their weather
maps “through a combination of hand motions in front of a green or blue screen
and button clicks on a wireless remote” [9]. For example, circling an area of the
map might cause the system to zoom into a particular region or district. Ges-
tureStorm resolves the gesture segmentation problem by having presenters click a
button on the remote at the onset of each gesture. This system relies on a green
screen to detect and track the presenter, which makes it unsuitable for everyday
presentations.

Additionally, iMatte Incorporated briefly produced a product called iSkia, a
small appliance that attaches to a standard LCD projector. This appliance floods
the projection screen with infrared light, and uses an infrared camera to detect the
presenter’s contour. The system directs a mouse cursor by finding the point on the
contour which is furthest from the contour’s horizontal center. If the presenter’s
hand is outstretched, this point corresponds to the presenter’s fingertip. Other-
wise, it might correspond to the presenter’s shoulder, elbow, or other extremity.
A wireless remote then allows presenters to issue mouse click events. While not
a gesture-based interface per se (since the hand emulates a mouse), it nonetheless
provides more direct interaction than using a wired mouse or keyboard.

Electronic signaling is certainly a viable option for segmenting gestures, however
the resulting solutions require additional equipment (e.g: a wireless remote), and
thus no longer rely exclusively only on computer vision. Moreover, the addition of
a remote reintroduces a physical transducer mediating the interaction between the
presenter and the presentation software; the presenter must now interact with the
physical remote in order to manipulate their presentation.
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2.3.3 Gesture segmentation in continuous motion

Finally, there exist numerous strategies [28, 24, 3] for segmenting dynamic gestures
in sequences of motion (i.e., without requiring dwelling or electronic signaling).
We describe these approaches in Part II of this document, focusing now only on
techniques that have been incorporated into gesture-based presentation systems.
Along these lines, only one such system was uncovered in our survey. Lee and
Kim’s PowerGesture [28] system provides a gesture-based front-end to Microsoft
PowerPoint. In this system, ten separate gestures can be recognized in streams of
continuous hand motion. Gesture recognition is driven by a network of discrete
hidden Markov models (DHMMs). To address the gesture segmentation problem,
Lee uses a “threshold model” which gives a time-varying likelihood threshold that
can be used in conjunction with the gesture DHMMs for gesture spotting. With
PowerGesture, users can manipulate the presentation (e.g., navigate back and forth
in the slides, or quit the presentation), but cannot interact with individual elements
on the slides.

2.4 Discussion

Gesture-based interaction with electronic presentation systems has a long history
in the literature. The earliest system, Charade, was initially described more
than 15 years ago. Nevertheless, there remain some very large open issues which
need to be addressed before gesture-based presentation control can be considered
a viable alternative to keyboards, mice and wireless remotes. First, there is a
systemic lack of real-world evaluation data to assess the usefulness of gesture-based
presentation systems. While authors often report anecdotes of using their software
to give presentations [55, 2], Cao’s Wizard of Oz study remains the only body of
work soliciting feedback from both the audience and the presenter. Cao’s study is
also the only body of research to use a standardized survey to enable quantitative
statistical analysis regarding the useability of a gesture-based presentation system.
Unfortunately, Cao’s results are limited in scale, analyzing only a total of 30 minutes
of data.

The second open issue regards the richness of the gesture-based interactions.
Gesture-based interaction promises to enable rich, direct interaction with the con-
tents of every projected slide. However, the systems described in the literature
typically only enable simple commands such as “next slide” and “previous slide”.

Subsequent chapters of part I of this document present the design and evalu-
ation of a gesture-based system which addresses the aforementioned open issues.
Importantly, the design of this system is motivated by an observational study of
people giving talks. This observational study is the subject of the next chapter.
Later, in part II of this document, we revisit the problem of reliably segmenting
(i.e., spotting) gestures embedded in continuous hand motion.
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Chapter 3

Observational Study

In this chapter we describe a small observational study of people giving talks.
This study was conducted in order to observe the hand gestures that naturally
arise throughout the course of a presentation. Our observations directly informed
the design of Maestro. In presenting our observations we review vocabulary for
describing and classifying gestures. This vocabulary will be used throughout this
document.

3.1 Introduction

In the previous chapter, existing gesture-based presentations systems were reviewed.
These past systems were often motivated by the observation that individuals tend
to gesture when giving a presentation; unfortunately, how presenters gesture, un-
der what circumstances, and for what purposes, is not generally discussed. This
information is critical to help create designs that naturally integrate with current
presentation practices. While not specific to gesture-based interfaces to presenta-
tions, there is some literature which begins to address these issues. Most notably,
Joel Lanir et al. conducted an observational study of people giving presentations
in order to determine how best to leverage multiple data projectors in large lecture
halls. While this study did not focus on gestures, it provides a good foundation for
understanding the contexts in which gestures are most-likely to arise. The study
reported that presenters gesture to approximately 17% of slides containing only
text, increasing to 88% when slides contain figures or tables. They also noted that
gestures tend to draw the audience’s focus, and are used to “connect the audio and
visual parts of a presentation”. Unfortunately, few details were provided regarding
the specific gestures that were observed.

Other related research includes work done by Shanon Ju et al. , who catego-
rized hand motions that arise during technical talks presented using an overhead
projector [20]. Here, three classes of gestures were identified: pointing using a pen
or one’s finger, writing on the transparencies, and incrementally revealing text by
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removing a piece of paper from the transparency. This work was used to inform
the design of a system which automatically annotates videos of technical talks so
that they can be indexed by information retrieval systems.

More generally, the description and categorization of natural speech-associated
gestures has been widely studied in psycholinguistics, which studies the cognitive
processes involved with language [13]. We briefly review this literature in Section
3.2 in order to introduce the concepts and vocabulary needed to better describe
gestures. We then present our observations and design recommendations which we
derived from a small observational study of people giving presentations.

3.2 Gesture taxonomy

In the field of psycholinguistics there has been a great deal of interest in describing
and categorizing gestures that arise from conversational speech. While a detailed
review of this literature is beyond the scope of this document, interested readers are
referred to the University of Chicago’s McNeill lab for Gesture and Speech Research
[35]. In reviewing this literature, one fact emerges: there is no clear consensus on
how to describe gestures [44, 61]. For example, in categorizing gestures there are at
least four competing gesture taxonomies [61], each using its own terminology. Addi-
tionally, researchers often combine ideas from these taxonomies [44, 23], a practice
which is complicated by the fact that the taxonomies are often incompatible. As
pointed out by Alan Wexelblat there are even cases of competing taxonomies using
the same term to mean two different things [61]. For this reason, we spend the next
section of this document carefully defining our choice of terminology.

3.2.1 Gesture form vs. Gesture function

The description of gestures can be divided along two orthogonal axes: the first
describes the gesture’s function (manipulative vs. communicative, etc.), the second
describes the gesture’s form (one-handed vs. bimanual, etc.). For example, one
can describe a particular sequence of hand motion as a “bimanual manipulative
gesture” or a “one-handed communicative gesture”. In this chapter the focus is on
formally categorizing gestures by their function. We take a less formal approach to
describing gesture form.

3.2.2 Gesture function

In categorizing a gesture’s function, we are interested in assigning the gesture to a
single category within a traditional gesture taxonomy. The taxonomy that we have
elected to use is a slightly modified version of the taxonomy described by Pavlovic
et al. in [44], which is in turn based on writings by Francis Quek, David McNeill,
and others [46, 34]. Our version of the taxonomy (figure 3.1) favors simplicity
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over granularity, yet it captures many aspects of gesture that are important for
interface designers. Although the taxonomy is presented as a tree, the taxonomy’s
categories consist only of the tree’s leaves: manipulative, beat, deictic, ideographic,
and semaphoric gestures. The inner nodes simply label semantically meaningful
groupings of the categories. For example, while “gesticulation” tends to be highly
associated with speech, the grouping is simply defined as the set of gestures that can
be classified as either beat gestures, deictic gestures or ideographic gestures. We
describe each of the five categories below, which are arranged from least language-
like to most language-like from left to right.

Gestures

Manipulative

Beat Deictic Ideographic

Communicative

Gesticulation Semaphoric

Figure 3.1: A taxonomy of gesture functions, organized from least language-like to
most language-like (from left to right).

Manipulative gestures

Francis Quek defines manipulative gestures as

those (gestures) whose intended purpose is to control some entity by
applying a tight relationship between the actual movements of the ges-
turing hand/arm with the entity being manipulated. [46]

An example is the “drag and drop” mouse gesture, which is used in many direct
manipulation-style interfaces. Importantly, Manipulative gestures are character-
ized by a tight “perception-action” loop, often requiring a great deal of hand-eye
coordination, or tactile feedback.
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Beat gestures

David McNeill describes beat gestures as

among the least elaborate of gestures formally. They are mere flicks of
the hand(s) up and down, back and forth that seem to ‘beat’ along with
the rhythm of speech. [34]

Beat gestures tend to emphasize portions of the discourse which the speaker
finds important.

Deictic gestures

Deictic gestures are simply pointing gestures, which serve to specify an entity (per-
son, place, or thing), or a group of entities. Here, the gesture’s information content
is almost completely derived from the spatial context in which the gesture occurs.

Ideographic gestures

Ideographic gestures are those that depict the ideas or concepts expressed in speech.
This category combines McNeill’s Iconic gesture category (where gestures depict the
literal content of speech[34]), and McNeill’s Metaphoric gesture category (where
gestures depict the speaker’s ideas, but not the literal speech content). Examples
of such gestures include holding one’s hands far apart when discussing quantities
that are large, tracing the shape or contour of an object in the air, or holding two
hands outward as if to weigh two competing concepts (similar to the spoken idiom
“on the one hand ... on the other hand”).

Semaphoric gestures

Semaphoric gestures are those whose form and function are related through a well-
defined gesture dictionary (American Sign Language [57], US Army Field Manual
FM 21-60: Visual Signals [1], etc.), or through established cultural norms (“thumbs
up”, peace, etc.). Importantly, semaphoric gestures express complete commands or
ideas, and often replace spoken language (especially in environments where spoken
language may be inaudible).

Having now established a vocabulary for categorizing and describing hand ges-
tures, we proceed with the description of our observational study of people giving
talks.
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3.3 Observational Study

In order to conduct our observational study of people giving talks, we selected 8
videos from Google’s Tech Talks website. These videos consisted of 8 individuals
lecturing for a total of approximately 71

2
hours. In each instance, the lecturers pre-

sented an electronic presentation which was front-projected onto a small projection
screen typical of a classroom or boardroom. Importantly, most areas of the screen
could be accessed by the presenters, although they may have had to walk around
to reach the far-left or far-right sides.

Immediately obvious from these videos was that presenters performed a great
many gestures, all of which can be categorized as gesticulation according to the
aforementioned taxonomy. This was not surprising since these spontaneous speech-
associated gestures are one of the most diverse forms of non-verbal communication,
representing more than 90% of all human gestures [33]. Additionally, we noted that
the presence of visual aids (the projected slideshow) vastly altered the dynamics of
the gesticulation, as compared to conversational speech. For example, the afore-
mentioned gesture taxonomy describes beat gestures as hand “flicks” that follow
the rhythm of the speech and which allow the speaker to emphasize certain words.
When lecturers are speaking in the context of an electronic presentation, they still
perform many beat gestures, but also use a great many deictic gestures to empha-
size words. This is done by actually pointing to the written words displayed within
the slides - something that is not possible in conversational speech. Perhaps even
more interesting is that, when pointing to words on the screen (a deictic gesture),
the presenters continue to move their hands to match the rhythm of speech (a prop-
erty of beat gestures). In this sense, these rhythmic deictic gestures are formatively
different than standard deictic gestures where one is pointing to a person, place, or
object.

Since the projection screen noticeably alters gesticulation, and because the ob-
servational study was conducted in order to inform the design of a presentation
system, we focused our attention on those gestures which were performed in front
of, or near, the projection screen. We now describe the gestures whose form and
apparent function were consistent across numerous presentations and presenters.

Emphasizing words using deictic gestures

As already mentioned, presenters often pointed, underlined, or circled words in
slides in order to emphasize those words while speaking (as in figure 3.2a).

Situating the discussion using deictic gestures

In addition to emphasizing words using deictic gestures, presenters often pointed
to entire bullet points or phrases (as in figure 3.2b). In these cases, presenters
pointed to the left or right extremities of the bullet point, with the bullet graphic
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(a) An example of a deictic gesture used
to emphasize a word. In this case the
word “configurations”.

(b) An example of the presenter using
a deictic gesture to situate the discus-
sion (by indicating the bullet being dis-
cussed).

(c) An example of the enumeration ges-
ture. The presenter continues this ges-
ture by pointing to the four other images
along the row.

(d) An example of a tracing gesture. The
presenter performs this gesture by trac-
ing the circle depicted on the slide.

Figure 3.2: Various deictic and iconic gestures observed in the Tech Talks videos.
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often serving as a natural target for these gestures. Rather than serving as a
form of visual emphasis, these gestures helped situate the discussion by indicating
which subtopic was being discussed. Moreover, if the bullets were being discussed
in sequential order, this deictic gesture also indicates the progression through the
slide.

Listing or enumerating items

Another deictic gesture, presenters were often observed pointing to numerous items
in rapid succession (as in figure 3.2c). This gesture was used to group objects or
to indicate membership in a set. When referring to the entire set, presenters often
waved their hands over all items, without indicating any one item in particular.

Tracing shapes or lines

Presenters were often observed tracing lines in a line graph, following arrows in
a flowchart, or tracing the contours of objects in images (as in figure 3.2d). In
some cases, this gesture served to “animate” a still image; for example, to indicate
the trajectory of a moving object. The gesture taxonomy lists such shape-tracing
gestures as ideographic gestures that help visualize the content of speech. In pre-
sentations, much of the contents of speech are already visualized through figures or
images. Nonetheless, presenters continue to trace shapes while speaking - but now
the gestures are performed against an image on the projection screen rather than
in the air.

Cropping figures

In at least four cases, we observed presenters “cropping” or “framing” portions
of an image or figure (depicted in figure 3.3). This is a deictic gesture, serving to
isolate a region of an image from the rest of the figure with the purpose of indicating
which aspect of the figure the presenter is currently discussing. This gesture was
especially interesting in that it employed the use of two hands.

Other regularities

In addition to these recurrent gestures, we also noted various other tendencies
regarding the use of gestures while presenting. First, presenters typically gestured
from a position just outside the left or the right edge of the projection screen -
rarely standing in front of the projected display. These findings echo those of Cao
et al. [5], who found a natural tendency for presenters to orient themselves next
to the projection screen. There are two possible explanations for this behaviour.
First, standing directly in front of the projection screen would occlude portions of
the slide from the audience’s view. This behavior is clearly undesirable, and should
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Figure 3.3: Various instances of the “cropping” gesture.
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be avoided. Second, the light from the projector is very bright and can distract or
disorient the presenter [51, 56, 15].

The second observation regarding the use of gestures during a presentation is
that, while each presenter demonstrated a clear bias in handedness, presenters
occasionally used both hands interchangeably (figure 3.4). When hand preferences
were observed, they appeared to be dependent on the presenter’s position relative
to the screen rather than on their natural handedness. For example, when pointing,
presenters used whichever hand allowed them to continue to face the audience while
speaking. Consequently, they used opposite hands when standing on opposite sides
of the projection screen.

(a) Pointing with the left hand. (b) Pointing with the right hand.

(c) Pointing with the left hand. (d) Pointing with the right hand.

Figure 3.4: Examples of presenters using their left and right hands interchangeably.

We also noticed that presenters employed a wide variety of hand postures –
even for the same gesture. For example, when pointing to a word, presenters may
point with either one finger (figure 3.5c) or two fingers (figure 3.5d), an open hand
(figure 3.5b), or the hand seen edge-on (figure 3.5a). As with handedness, the use
of hand postures appears to be interchangeable, and does not noticeably effect the
apparent meaning of the gesture.

Having described the gestures observed in the observational study, we now de-
scribe how these observations informed the design of Maestro.
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(a) Pointing with the hand, seen edge-on. (b) Pointing with an open hand.

(c) Pointing with one finger. (d) Pointing with two fingers.

(e) Pointing with a “cupped” hand posture.

Figure 3.5: Various hand postures used for deictic gestures.
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3.4 Design implications

Prior gesture-based presentation systems have focused exclusively on using arbi-
trary semaphoric gestures to navigate a slideshow (e.g., using two or three out-
stretched fingers to move forward and backward between slides [59]). These ges-
tures rarely depend on slide content, and do not resemble the types of gestures
that naturally occur during a presentation. The observational study found that
naturally occurring gestures are classified as gesticulation, and serve communica-
tive purposes; they complement the verbal presentation by drawing the audience’s
attention to particular features of the visual presentation. In this sense, they are
highly contextualized, and depend heavily on the content and layout of the slides.
While Maestro (as with all other gesture-based presentation systems in the litera-
ture), can only recognize a limited set of semaphoric gestures, it is reasonable to
design gestures that resemble natural gesticulation. This leads us to further classify
Maestro’s semaphoric gestures into two categories: presentation navigation gestures
and slide content gestures. We describe each of these subcategories below:

• Slide content gestures

– resemble gesticulation,

– are heavily contextualized by slide content and layout,

– are designed to supplement the verbal presentation,

– and are directed at both the audience and the system.

• Presentation navigation gestures

– do not resemble gesticulation,

– are used to advance the slideshow,

– are independent of slide content,

– and are directed only at the system.

Where possible, Maestro’s gestures are inspired by gesticulation observed in
the observational study. For example, Maestro allows presenters to specify objects
using deictic gestures, and uses a gesture very similar to “cropping” in order to
zoom into a figure. Even if gestures do not directly resemble gesticulation, we
make the following recommendations in order to design gestures which share many
properties with this natural form of gesture:

• The gesture recognition system should treat each hand interchangeably, al-
lowing gestures to be performed by either hand. In other words, the meaning
of a gesture should not depend on which hand was used.
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• The system should avoid the use of artificially-imposed hand postures (e.g.,
requiring a “thumbs up” posture) since presenters use many hand postures
while presenting, and these postures tend to be interchangeable.

• The system should avoid the use of overly complex stroke gestures (e.g., stroke
patterns associated with written characters) since natural gesticulation tends
to consist of brief (efficient) emphatic motion.

• Gestures should be performed from a position just outside the left or the
right side of the projection screen where the presenter is unlikely to occlude
the audience’s view of the slide, and where the presenter is unlikely to be
distracted by the projector light.

The danger in designing a gesture language based around gesticulation is that
it becomes increasingly difficult to distinguish between spontaneous gesticulation
and the semaphoric gestures that are indented to elicit a response from the system.
The ability to ignore gesticulation while still recognizing the semaphoric gestures
is crucial so as to prevent suppressing one’s natural tendency to gesticulate; if pre-
senters adapt to recognition errors by avoiding gesticulation, then the presentation
will lose an important aspect of non-verbal communication. In the next chapter,
we present the design of a gesture-based presentation system which addresses this
challenge, as well as other challenges related to gesture-based presentation control.
This gesture-based presentation system, Maestro, is directly inspired by the results
of the observational study described in this chapter.
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Chapter 4

Designing Maestro

Upon completion of the observational study, work began on designing Maestro,
a gesture-based presentation system that requires only a web camera for input.
In this chapter, we present Maestro’s design, and present some of the lessons we
learned in early stages of user testing. The evaluation of Maestro’s final design
is presented in Chapter 5, while the evaluation of Maestro’s gesture recognizer is
presented later, in Chapter 8.

4.1 Design goals and challenges

Maestro is a presentation system which allows presenters to use hand gestures to
both navigate a projected slideshow and to interact with the individual components
of each slide. Maestro’s design is guided by the following ideals:

1. Software Features and the Gesture Language
Users should be able to navigate the presentation (e.g., move between slides),
as well as interact with elements within slides (e.g., bullet points) using ges-
tures that are similar to those observed in the observational study. However,
these gestures must be designed in such a way that they are not erroneously
recognized when the presenter is gesticulating.

2. Feedback, Affordances and Error Recovery
The system should be easily learned, provide affordances for its use, offer
appropriate feedback during use, and support swift recovery from recognition
errors. However, achieving these overall useability goals should not interfere
with the dynamics of the presentation nor with its visual appearance.

3. Hand Detection and Gesture Spotting
Maestro should rely only on a single web camera for input, and a data projec-
tor for output. However, this configuration complicates the task of tracking
the presenter’s hands and spotting gestures.
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While Maestro’s design was guided by the aforementioned ideals, the specifics of
the design evolved according to an iterative design process. This process began with
numerous mock-ups evaluated by open-ended interviews with potential users. This
was followed by several Wizard of Oz simulations 1. Working prototypes were then
developed, and were tested in the laboratory by six individuals. The design was
modified on numerous occasions in response to observations and feedback obtained
in these laboratory tests. The remaining sections of this chapter describe Maestro’s
final design in detail, and are organized according to the three design goals as
outlined above.

4.2 Software features and the gesture language

The structure of Maestro presentations is very similar to those of other contempo-
rary presentation systems (PowerPoint, Keynote, Impress, etc.). Each presentation
is composed of a sequential deck of slides, where each slide can contain some com-
bination of written text, bullet hierarchies, and embedded figures. In support of
the first design goal, Maestro allows presenters to use hand gestures to navigate
the slide deck and to interact directly with the content of each slide. Maestro’s
navigation gestures provide both sequential and random access to slides. Maestro’s
content gestures support the communicative needs of the presenter (e.g., highlight-
ing talking points), and allow presenters to adapt their presentations in response
to audience questions and feedback (e.g., revealing additional details in response to
an audience question). Both classes of gestures are designed to reflect the findings
of the observational study, and to be easily detected by software. In the sections
that follow, we first present an overview of the gesture language, and then provide
more details regarding Maestro’s navigation and content gestures.

4.2.1 Maestro’s gesture language

In accordance with the recommendations outlined by the observational study, Mae-
stro’s gestures are designed to be performed by a presenter standing just outside
the left edge of the projection screen. Gestures can be performed with either hand,
and do not depend upon hand posture. In all cases, Maestro’s gestures are designed
to be performed quickly and without requiring much precision – a property recom-
mended by Baudel in [2]. Consequently, gestures tend to consist of brief emphatic
motion resulting in highly linear hand trajectories.

While Maestro’s gestures are simple, and are quick to perform, they must be de-
signed to prevent the accidental recognition of spurious commands. Consequently,
Maestro’s gestures are engineered to give rise to various non-accidental motion fea-
tures. Non-accidental motion features, like non-accidental image features, are often

1In a wizard of Oz simulation, complex interactions are simulated by having an unseen indi-
vidual control the software in response to actions performed by the user.
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invoked in the field of computational perception [18, 31]. In general, non-accidental
features are those which are best explained by underlying regularities or structures
in the world rather than by coincidences. For example, coterminating edges in an
image are often indicative of corners. Similarly, various properties of hand motion
are often indicative of an intentional gesture [12]. Maestro’s gestures make use of
the following non-accidental motion features:

• Axis-aligned, linear hand motion
In other research, we have shown that individuals are quite accurate when
instructed to move their hands either horizontally or vertically, but that this
axis-aligned linear motion does not typically occur in more natural uncon-
strained circumstances [12]. Consequently, Maestro’s gestures consist of ei-
ther horizontal or vertical strokes.

• Bimanual Interaction
Simply stated, it is highly unlikely that two hands will accidentally move
together along parallel lines, move apart collinearly, or rendezvous in space
and time. Maestro uses this fact to its advantage when spotting gestures.

• Spatial Context
To the extent possible, Maestro uses the content of the projected slides to
contextualize the hand’s motion. For example, observing a hand stop or
change directions upon reaching a bullet point is a good indication that a
gesture is imminent or occurring.

• Dwelling
Dwelling, or holding a stationary position for a period of time, is one of the
most commonly used cues for identifying the start or end of a gesture in other
systems. However, dwelling is used sparingly in Maestro, and mainly in those
instances where the presenter is unlikely to be addressing the audience.

While these features have been discussed individually, they are often combined
to provide stronger cues for spotting gestures. For example, many of Maestro’s
gestures involve the rendezvous of two hands directly over a bullet point or figure,
followed by the vertical motion of one or both hands. In combination, these cues
provide strong evidence of a gesture occurrence.

The strategy of using non-accidental features to help spot gestures is generic,
and applies to all of Maestro’s gestures. This includes all gestures that support
navigation and as well as those that support interactions with slide content. We
now describe each of these gesture classes in turn.

4.2.2 Navigation gestures

Maestro’s navigation gestures allow presenters to move between slides, to randomly
access slides, and to scroll slides. Invariably, these gestures are performed in Mae-
stro’s staging area; a region which occupies the left margin of each slide. The staging
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area provides a spatial context for navigation gestures, clearly indicating that the
object being manipulated is the slideshow itself. Early versions of Maestro did not
use an explicit staging area, and presenters often found themselves performing these
gestures in the slide’s empty margins in order to avoid their confusion with gestures
that operate on slide content. Maestro’s staging area is simply a formalization of
this practice, enhancing the slide’s left margin to contain visual guides to help the
presenter form gestures. In order to minimize its impact on the visual appearance
of the slide, the staging area appears only when the presenter stops moving their
hand within the slide’s margin; however, gestures can be performed even when the
stage is not visible.

The staging area is used almost exclusively for slide navigation. The simplest
navigation gestures are “next slide” and “previous slide”. To move to the next slide,
a presenter places one hand in the center of the staging area and moves the hand
straight down (figure 4.1a). Likewise, to move to the previous slide, a presenter
need only move their hand straight up, again starting from the center of the staging
area (figure 4.1b). A set of horizontal ruled lines in the staging area delineate the
regions for invoking these gestures.

In addition to the “next slide” and “previous slide” gestures, Maestro also allows
presenters to open a carousel containing thumbnails of all slides in the presentation.
To access the carousel, the presenter places both hands in the stage’s center section,
and then pushes the hands away from their body (figure 4.1f). The carousel occupies
the space vacated by the slide. Using deictic gestures, the presenter is then able to
randomly select any slide in the carousel.

Finally, unique to Maestro is the ability to navigate within slides; Maestro
allows presenters to author scrollable slides whose content is longer than the height
of the projection screen. Scrollable slides address a well-known issue which arises
because electronic slides provide only a limited space in which presentation authors
may layout their material. In fact, the average slide contains only 40 words [58].
Edward Tufte, an expert in information visualization and one of PowerPoint’s chief
critics, has written about this issue:

Many true statements are too long to fit on a PowerPoint slide, but that
does not mean we should abbreviate the truth to make the words fit. It
means we should find a better way to make presentations. [58, p. 1]

By allowing slides to scroll, the divisions between Maestro’s slides is dictated
by the nature of the material being presented rather than by screen real estate
constraints. To scroll a slide downward, presenters begin by placing both hands
in the stage’s center region. They then move one of the hands straight down
(figure 4.1d). This gesture is nearly identical to the “next slide” gesture, but is
differentiated by the use of two hands. The slide responds by immediately scrolling
down, and continues to scroll down as long as the hands remain in that particular
configuration. The scroll speed is determined by the distance between the hands.
Scrolling up is performed with a similar gesture (figure 4.1c).
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Earlier versions of Maestro employed a manipulative slide scrolling gesture where
the slide’s vertical motion directly matched the presenter’s hand motion. This
panning gesture gave the illusion that the presenter was moving the slide up or
down on the surface of the projection screen. Unfortunately, users complained that
scrolling long distances required numerous strokes, which “felt like swimming” and
was tiring. This is an example of a common touch-screen gesture that is ill-suited
for large displays.

4.2.3 Slide content gestures

Maestro also affords direct interaction with the actual content of the slides. These
gestures support the communicative needs of the presenter, and allow the presenter
to adapt slide content in response to specific needs and circumstances that arise
while presenting. First, blocks of text are automatically and instantly highlighted
whenever one hand passes within their proximity (figure 4.2a). This serves to con-
nect the verbal discussion with specific elements of the visual presentation. By
pointing, and dwelling, presenters can follow hyperlinks incorporated in text, en-
abling them to access additional slides that explore a particular subject in more
detail. Presenters can also selectively enlarge figures embedded alongside text.
When enlarged, a figure occupies the entire screen, making even small details visi-
ble to the audience. To zoom into a figure, the presenter moves both hands into the
figure, then pulls them apart vertically (figure 4.2e). These capabilities – highlight-
ing points and enlarging figures to introduce more detail – were directly inspired
by practices identified in the observational study.

Finally, presenters can author slides with hierarchical lists of bullets, with child
bullets initially hidden. This capability allows the presenter to cater the detail of
the presentation to the particular needs of the audience. For example, a bullet
hierarchy may be expanded in order to reveal more details of the topic in response
to an audience question. Alternatively, bullet hierarchies may start collapsed in
support of short talks (e.g., when presenting a summary in a conference), only
being expanded when presenting a longer version of the material (e.g., when giving
a lecture). To reveal child bullets, the presenter places both hands next to the bullet
point of interest, and slides one hand down. The reverse motion hides the child
bullet point. These bullet gestures are similar to the scrolling gestures, differing
only by the spatial context in which the gestures are performed.
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Figure 4.1: Maestro’s presentation navigation gestures. Each of these gestures is
performed in the staging area.

Follow hyperlinks by dwelling

Collapse bullets with two hands

Expand bullets with two hands
Zoom Into Figures

Figure 4.2: Maestro’s content gestures. Each of these gestures is performed in close
proximity the object being operated upon.
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4.3 Command affordances, feedback, and error

recovery

One of the major challenges in developing Maestro was designing a mechanism for
communicating command affordances and system feedback to the presenter. In the
next sections, we describe how Maestro addresses each of these challenges in turn.

4.3.1 Command Affordances

Maestro communicates command affordances via a pair of cursors which follow the
hands as they move around onscreen. At the most basic level, the cursors reveal
where the system thinks the presenter is pointing. The cursors are augmented with
gesture mnemonics, which serve both to indicate which commands are available
in a particular context (similar to context-sensitive mouse cursors), and to remind
users how to perform their gestures (figure 4.3). It is this latter purpose which is
perhaps more interesting, and more specific to our particular application. As an
example, when the hand is placed in the staging area of a slide, the cursor will be
decorated with a mnemonic reminding the presenter that there is a previous slide
that can be accessed by moving the hand upward. This same mnemonic does not
appear when visiting the first slide of the presentation since it is not possible to
go to a “previous” slide in this situation. Mnemonics are not meant as detailed
gesture instructions, but instead serve to indicate the general direction and form of
the gesture.

In addition to gesture mnemonics, Maestro uses various other simple visual cues
to indicate command affordances. For example, the tops and bottoms of slides have
rounded corners in order to indicate if they can be scrolled. If a slide can be scrolled
down, the bottom rounded corners are not visible. This indicates that the bottom
of the slide has not yet been reached. Similarly, the top rounded corners are not
visible when the slide can be scrolled upwards.

4.3.2 Command Feedback

Since Maestro relies entirely on computer vision for input, tactile and other forms
of feedback are not available. Consequently, Maestro renders all feedback to the
display. Since the display is shared between the audience and the presenter, and
because feedback is directed only at the presenter, all visual feedback must be kept
quite subtle. For feedback, Maestro displays translucent icons within the staging
area to reassure the presenter that a command has been received. These icons
remain displayed for several seconds allowing the presenter ample time to find
them. Because the icons fade out with time, presenters can assess their relevancy.

One important lesson learned about providing feedback in a gesture-based set-
ting is that the system should provide feedback even when gestures are performed
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Gesture Mnemonic

Next Slide

Previous Slide

Scroll Down

Scroll Up

Open Carousel

Close Carousel

Figure 4.3: Several gesture mnemonics used by Maestro. The dots in the “scroll
up” and “scroll down” mnemonics indicate the presence of a stationary hand.

in invalid contexts. It is often tempting to use context and system state to rule
out as many gestures as possible. For example, one could argue that the “scroll
down” gesture need not be considered when the system is displaying a figure in the
full screen (since, by definition, the figure is fitted to the screen and need not be
scrolled). While this strategy improves efficiency and helps to reduce false-positive
rates, it precludes the possibility of providing negative feedback to the user. Lack
of feedback is almost always attributed to a recognizer error (specifically a false-
negative), and the user will often repeat the gesture in error. A more appropriate
response is to have the system acknowledge the gesture but provide some indication
of the problem.

4.3.3 Error recovery

As suggested by both Baudel [2] and Cao [5], Maestro allows presenters to recover
from recognition errors by issuing an “undo” command. Maestro’s undo command
can be accessed at any time by moving the hand as depicted in figure 4.1h. Impor-
tantly, the staging area always displays the name of the last command recognized, so
that the presenter will know which command will be undone by the aforementioned
gesture.

In addition to supporting the undo operation, Maestro allows slides to be nav-
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igated using common keyboard commands (e.g., left-arrow, right-arrow). Maestro
also interfaces with many presentation remote controls. This provides presenters
with a “fail safe” allowing them to continue a presentation in case of technical
difficulties with Maestro’s computer vision and gesture recognition machinery. In
support of the “fail safe” mode, context-sensitive commands can be issued using
the mouse.

4.4 Hand tracking and gesture spotting

In the sections that follow, we describe Maestro’s gesture recognizer, along with
the features that facilitate differentiating gestures from gesticulation. However,
before gestures can be spotted, the user’s hands must be detected and tracked. We
describe the hand tracker below, followed by a description of the gesture recognizer.

4.4.1 Hand tracking

The first step in recognizing gestures is to detect and track each of the presenter’s
hands. It turns out that this task is rather challenging in a front-projected environ-
ment since the light emanating from the projector can vastly alter the appearance
of the hands. Consequently, detecting hands using only skin color or shape cues
is rather challenging [14, 55, 30]. Motion detection, using background subtraction
techniques, is also challenging since the presentation is dynamic and the background
is always changing. Of course, the background is controlled by software. This leaves
open the possibility of performing known-background subtraction in order to de-
tect occluding objects [14, 30]. However, this too is non-trivial since it requires
calibrating the projector for color constancy, and requires modeling the camera’s
color response. This is both complex and computationally expensive.

In the interest of reliably detecting the presenter’s hands in real-time, and be-
cause hand tracking is not the primary focus of our research, Maestro facilitates
hand tracking by requiring users to wear a mismatched pair of brightly colored
gloves. Specifically, one glove is bright red (or orange) and the other glove is light
blue (or cyan, which reflects blue and green light about equally). The use of bright,
high-saturation colors is important because dark colors can easily be confused with
the shadows cast by the hands or arms, while low-saturation colors tend to be eas-
ily distorted by the light emanating from the projector. When presenters wear the
gloves, hand detection can proceed using simple color thresholding techniques that
are computationally inexpensive. To further simplify hand detection, the presenta-
tion system renders all slides in grayscale. This ensures that the gloved hands are
not confused with elements of the projected slides.

Even in this idealized hand-tracking environment, hand tracking is non-trivial.
One notable challenge is that the hands tend to “disappear” when they pass over
especially dark regions of the slides; since projectors render dark regions by limiting
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the amount of light that reaches the screen, the hands are often poorly illuminated
when in these dark regions. This problem typically occurs when gestures oper-
ate on dark images. To overcome this difficulty, Maestro temporarily lightens the
appearance of dark images when it senses the hands approaching.

While Maestro’s hand tracking system is certainly not ideal, it is fast, it is reli-
able, and it enabled us to develop Maestro to the point where it could be used on a
day-to-day basis. Maestro’s hand tracker can be easily replaced by a more sophis-
ticated tracker should one become available; this should not affect the functioning
of the gesture recognizer which is described in the next section.

4.4.2 Gesture spotting

Another challenge faced when designing Maestro was establishing gesture recog-
nition machinery capable of spotting meaningful gestures that are embedded in
longer sequences of hand motion. Gesture spotting is especially challenging in a
presentation environment where commands are issued only intermittently, mean-
while the presenter may make use of a great deal of gesticulation while discussing
the slide content. Here, and elsewhere in Part I of this document, we describe how
gesture spotting was achieved using Maestro’s “ad-hoc” gesture recognizer. This
recognizer was developed in order to support the rapid prototyping of numerous
gesture languages, and is supplanted in Part II of the thesis by a more sophisti-
cated recognizer. However, a brief description of the ad-hoc recognizer is important
because it was used both throughout Maestro’s design process, and in Maestro’s
real-world evaluation.

With the ad-hoc recognizer, gesture spotting occurs in two steps. First, the
recognizer identifies an instantaneous cue demarcating either the start or the end
of a gesture (or sometimes both). Examples include observing two hands rendezvous
over a specific bullet, figure or region. This is followed by the recognition of the
gesture’s motion in space. In this sense, the starting or ending cues (also known
as segmentation cues) serve to initiate a local search for the gesture. In both
stages of the recognition process, various properties of the hand trajectories (e.g.,
start/end location, path length, general direction of travel, moment of inertia) are
measured and are tested against gesture templates containing manually established
range-constraints for these properties.

4.5 Discussion

In this chapter, Maestro’s design was described in detail, and represents one possible
solution to the design challenges. In describing Maestro’s design, we have been
careful to list our motivations and the lessons we learned. We hope these are useful
to others exploring similar research. Nevertheless, it is our belief that Maestro is
at least representative of gesture-based presentation systems in general, and that it
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can be used to evaluate the viability of gesture-based presentations in a real-world
day-to-day context; Maestro supports a superset of the features enabled by similar
systems in the literature, and the entire system was as carefully and painstakingly
designed using an iterative design process. In the next chapter, we describe the
results of Maestro’s real-world evaluation.
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Chapter 5

Evaluation and Lessons Learned

To assess the viability of a gesture-based presentation system, we deployed Maestro
in a classroom for several weeks. During this time, Maestro replaced PowerPoint
as the main presentation system. The data collected from this trial consisted of 12
hours worth of lectures, and represents the most extensive real-world evaluation of
a gesture-based presentation system available in the literature. In this chapter, we
discuss the results of this experiment.

5.1 Study Overview

Our deployment study was designed to assess the overall viability of a gesture-based
presentation system in a real-world setting. In particular, we sought to answer the
following questions:

• How does gesture-based input compare to more traditional input modalities
such as keyboards, mice and presentation remotes?

• What software features are most useful, and which need further refinement?

• How does gesture-based input fit in with current presentation practices? Does
gesture-based input noticeably alter the dynamics of presentations?

To answer these questions, a research supervisor used the system to give lectures
to approximately 100 students over a two-week period. The lectures were part
of a third-year university course unrelated to the research project. During this
period, Maestro was used a total of 12 times to deliver six unique one-hour lectures
(lectures were given three times a week, with the same lecture given twice a day).
For each pair of lectures, the lecturer carried in, set up, and calibrated the necessary
equipment for deploying Maestro. In this case, the equipment included a laptop,
an external web camera, and the colored gloves; the room was already equipped
with a non-portable data projector. Since the classroom was used by other courses,
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Maestro’s portability and ease of deployment was a necessary precursor to these
trials.

As mentioned above, lectures were taught by one of Maestro’s researchers. This
researcher functioned in a supervisory role during Maestro’s development, and he
was not familiar with its specific implementation. Accordingly, he had to learn how
to setup, calibrate, and use the system, as well as author content. Thus, while he
was involved in the project, his experiences in using the system were closer to those
of a first-time user; in fact, there were many times when he needed to ask what
features were available and how they were used.

Prior to deploying Maestro, lectures were given for approximately eight weeks
using PowerPoint controlled by a laptop keyboard. The laptop was located at a
lectern in a corner of the classroom. The blackboard was also used occasionally dur-
ing this time. After Maestro’s deployment, lectures were given for two weeks using
PowerPoint and a wireless remote control. While this evaluation did not attempt
to perfectly balance the use of the various interaction mechanisms, it nonetheless
serves to provide the first real-world comparison of three distinct control mecha-
nisms, and includes the first longitudinal evaluation of a gesture-based interface to
a presentation system.

For data collection, several of the lectures were videotaped by the author of
this document, who also took notes. Students were encouraged to provide feedback
during lectures and were given a questionnaire at the end of the term to provide
both structured and open-ended feedback. We begin by describing the survey
results, and then discuss observations compiled from the videos, written notes, and
audience feedback.

5.2 Survey Results

After completing several weeks of lecturing using each of the four presentation styles
(blackboard, PowerPoint controlled with the keyboard, PowerPoint controlled with
a wireless remote, and Maestro), students were asked to complete a questionnaire
consisting of 40 Likert items. A Likert item is a written statement, paired with a
discrete symmetric bipolar set of responses with which the participant self-reports
their agreement with the statement [27]. Maestro’s audience questionnaire used a
4-point response set ranging from 1 (strongly disagree) to 4 (strongly agree). While
a five-point set is more common (which includes a “neutral” option), we removed
the neutral option so as to force participants to indicate either a positive or negative
expression of agreement to each statement.

Importantly, the questionnaire was divided into four themes: a comparison of
the various presentation styles; an evaluation of Maestro’s features; an evaluation
of Maestro’s visual appearance; and finally, an evaluation of Maestro’s gesture
recognition machinery. Responses in each of these categories are detailed in the
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sections that follow. Before reporting the results of the survey, it is worthwhile
reviewing the statistical methods that were utilized in the analysis.

5.2.1 Statistical Methods

Audience members completed the questionnaire voluntarily. Approximately 70 of
more than 100 students completed the questionnaire. After administering the sur-
vey, the responses were compiled so as to gauge audience agreement with each
statement, and to compare their responses across pairs of statements. In this set-
ting, selecting an appropriate statistical test is a matter of some debate. Since
Likert scales are presented as symmetric and bipolar continuums, it is common
to treat the responses as interval data [27]. Provided that the distribution of the
responses is approximately normal (or at least, bell-shaped), a t-test can be used
to gauge agreement with any single statement, and a paired t-test can be used to
compare responses to a pair of statements.

However, the responses to the survey’s Likert items are certainly not actually
normally distributed since they are discrete and are selected from a small set of pos-
sible values [27]. In this sense, the responses are more correctly labeled as ordinal
data as opposed to interval data. Moreover, histograms of audience responses are
often not bell-shaped (as in figure 5.2b) suggesting that a t-test would be inappro-
priate in many cases. Finally, treating the responses as interval data (as opposed
to ordinal) assumes that the responses are somehow equidistant from one another.
However, this assumption is not always justifiable. In our case, it suggests that the
distinction between “strongly agree” and “agree” is similar to the distinction be-
tween “agree” and “disagree”; but, it is unlikely that these differences are directly
comparable in this way.

As a consequence of the aforementioned properties of the data, it is technically
more appropriate to use a nonparametric statistical test in our analysis [27]. In or-
der to accomplish this, audience responses are collapsed into a nominal form where
each participant either expresses positive or negative agreement to each statement.
In other words, participants either “accept” or “reject” each statement. In this way,
each audience response can be modeled as a single Bernoulli trial in which a “suc-
cess” corresponds to acceptance of the statement. The total number of successes
to any statement follows a Binomial distribution. A sign test can then be used to
both gauge overall agreement with a single statement, and to compare responses
to a pair of statements. When gauging agreement to a single statement, the null
hypothesis proposes that the responses are from a Binomial distribution in which
the probability of success is p = 1

2
. Accepting the null hypothesis suggests a strong

possibility that audience opinion is evenly divided on the statement. Similarly,
when comparing responses to a pair of statements, responses to one statement are
subtracted from responses to the other statement on a per-participant basis (i.e.,
responses are paired). In cases where this difference is zero (i.e., no preference is
stated), the response-pair is simply ignored. Cases where the difference is positive
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are considered to be “successes”. Again, the number of successes follows a Bino-
mial distribution, and the null hypothesis assumes that the probability of success
is p = 1

2
.

In this chapter, the sign test is used as the main statistical method for data
analysis. However, the results of t-tests are also reported as a further descriptive
measure of audience agreement. The t-test results should be considered with some
skepticism. While the t-test may not be technically appropriate, it nonetheless
provides useful data. Specifically, the t-test utilizes the magnitude of the audience
responses (i.e., “agree” vs. “strongly agree”), while the sign test does not. In
practice, we have found that both tests reveal similar trends in the data, but that
the sign test is far more conservative when computing statistical significance.

5.2.2 Comparing presentation media

The first section in the questionnaire sought to compare Maestro with use of a
blackboard; PowerPoint with a keyboard and mouse; and, PowerPoint controlled
by a wireless remote. Participants rated each system independently in terms of
interactivity, visual appeal, and efficiency. This portion of the questionnaire was
very similar to the one used by Cao et al. in [5].

To analyze the data from this section of the questionnaire, we used a paired
sign test. Recall, this statistical test directly compares an individual’s perceptions
of one presentation medium to their perceptions of another presentation medium.
In comparing the competing presentation technologies to Maestro, we found the
following results (at a significance level of α = 0.05):

• Maestro is considered more interactive than using the blackboard (p < 0.001),
PowerPoint with a keyboard (p < 0.001), and PowerPoint with a remote
(p < 0.001).

• Maestro is considered more visually appealing than using the blackboard (p <
0.001). No statistical difference was found when comparing the visual appeal
of Maestro to that of PowerPoint using a keyboard (p = 0.664) or PowerPoint
with a remote (p = 0.832).

• Maestro is seen as less efficient than PowerPoint using a remote (p < 0.001).
No statistical difference was found between Maestro and the blackboard (p =
0.627); or between Maestro and PowerPoint controlled using a keyboard
(p = 0.076). However, a low p-value in the latter case suggest a trend to-
wards finding Maestro less efficient than a keyboard-controlled PowerPoint
presentation.

The mean scores across these dimensions and presentation media are presented
in figure 5.1.
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Figure 5.1: Mean scores for each of the presentation media. Error bars represent a
95% confidence interval about the sample means.

From these results we find that Maestro is considered to be more interactive
than the other presentation media and input modalities. This result validates the
notion that gesture-based input can positively enhance presentations. At the same
time, Maestro was found to be less efficient than PowerPoint. This lower efficiency
score is worthy of further investigation, but there are a number of potential reasons
for this lower score. First, advancing slides requires a relatively large physical
action; the presenter must orient himself next to the projected content, position
the hand, then swipe it downward. This takes quite a bit longer than pushing a
button on a remote that is already in hand. Also, the lower perceived efficiency
could be partially attributed to delays caused by occasional gesture recognition
errors. More work is required to determine the importance of these contributing
factors.

5.2.3 Evaluating Maestro’s features

The second section of the questionnaire asked participants to rate Maestro’s specific
software features. Since audience participation was voluntary, the number of re-
sponses varied from 62 to 64 on any given item. Detailed results of these responses
are presented in figures 5.2a - 5.2c, and in table 5.1b.
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In regards to Maestro’s specific software features, Maestro’s ability to present
figures in full-screen mode was overwhelmingly welcomed by participants: 42% of
the students agreed, and 52% strongly agreed, with the statement that “it is often
useful to view figures in full-screen mode.” The positive response to this feature
is highly statistically significant, and represents the most positive response to any
statement in the survey.

The majority of participants also responded positively to the automatic high-
lighting of bullet points, with 64% indicating it was a useful feature. Again this
result is statistically significant at the 5% level (p-value of 0.033). Although the
feature elicited a positive response, there are many opportunities for improvement.
For example, one student commented that the bullet highlighting decreased read-
ability because it placed a gray background behind black text, thereby reducing
contrast. This is a legitimate concern that could be addressed by reversing fore-
ground and background colors when highlighting bullet points, or by using some
alternative approach to emphasizing text. Additionally, one student noted that the
system should also allow the presenter to highlight individual keywords and phrases
within bullet points. This is certainly an interesting possibility, and is consistent
with the behaviors witnessed in the observational study. More research must be
done to determine how best to integrate this feature.

Audience members were also asked to evaluate the usefulness of scrollable slides.
Here, only about 42% of participants thought that the ability to scroll slides up and
down was advantageous. However, with a p-value of over 0.250, the null hypothesis
cannot be rejected. In other words, there is a strong possibility that the audience
opinion of this feature is evenly divided. In either case, the superiority of scrollable
slides was not accepted by the audience. In terms of open-ended feedback, all
comments regarding this feature were negative. For example, one student wrote:

I really don’t like the scrolling slide feature. To me slides are meant to
have concise information on a single point (...) Scrolling is sort of going
against the strengths of the medium.

One important note about scrollable slides is that this feature was used only
occasionally during the evaluation period. In part, this is because most of the
slides were transcribed from existing PowerPoint presentations. Since PowerPoint
doesn’t support this feature, slide content almost always fit on a single screen.
A few slides did require scrolling, but only because font and layout differences
between PowerPoint and Maestro caused some bullets to not fit on a single page.
Consequently, scrolling only ever revealed one or two extra lines of text, and was
not used to its full potential. This fact was noted by one student, who commented
that “scrollable slides might be better if there is more content.”

Finally, expandable bullet points and hyperlinks were rarely used during the
trial, and were not represented in the audience questionnaire. Again, these features
were infrequently used because slides were transcribed from existing PowerPoint
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presentations (which do not support these features). Additionally, while the slide
carousel was always available for use, this feature was never utilized during the two-
week trial; there was little need to randomly access slides once the presentation was
started.

S1. “The automatic highlighting of bullet points, whenever the hand is nearby,
helps clarify which point the presenter is discussing.”

S2. “It is often useful to view figures in a full-screen mode.”

S3. “Slides that can be scrolled up or down are advantageous since they can contain
more material than can be displayed at once.”

(a) Survey statements

Descriptive Statistics Sign Test T-Test
Median Mode % Successes p-value µ̂ σ̂ p-value

S1. 3 (agree) 3 (agree) 64.1% 0.033 2.70 0.89 0.071
S2. 4 (strongly agree) 4 (strongly agree) 93.8% < 0.001 3.44 0.66 < 0.001
S3. 2 (disagree) 2 (disagree) 41.9% 0.253 2.29 0.86 0.059

(b) Descriptive statistics and statistical test results of survey responses.

Table 5.1: Survey results for statements about Maestro’s features. Items in bold
correspond to statistically significant results.

5.2.4 Evaluating visual appearance

The third section of the questionnaire assessed Maestro’s visual appearance. Results
are depicted in figures 5.3a - 5.3f, and in table 5.2b. When developing Maestro, there
was some concern that the staging area would detract from the presentation’s visual
appeal. However, about 63% of the audience reported that the staging area was not
a problem. While this result is not quite statistically significant when using the sign
test, its low p-value suggests a positive trend (p-value = 0.060). This is supported
by the t-test, which did find statistical significance (p = 0.025). Excluding the
staging area, 85% of the audience found Maestro’s slides to be visually appealing.
In terms of audience comments, one student wrote that we “could improve on the
look, in terms of colors”, but “the layout, in general, is well designed.” These
findings are not surprising given that Maestro’s slides are very similar to those of
PowerPoint and similar systems.

The third section of the questionnaire also sought to gauge audience opinion on
the use of colored gloves. While most of the audience found both the hand tracking
cursors and the colored gloves distracting, the results are not quite statistically
significant (61%, p = 0.098 for the cursors; and 62%, p = 0.060, for the gloves).
Again, a relatively low p-value, and the t-test results, suggest a trend towards
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(a) S1: “The automatic highlighting of bullet points, whenever the hand is nearby, helps
clarify which point the presenter is discussing.”
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Figure 5.2: Responses to various statements regarding Maestro’s features.
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finding the colored gloves distracting. In regards to the gloves and cursors, most
audience comments were negative. For example, one student wrote “what I disliked
most about Maestro was the glove coloring”, while another wrote: “I found the dots,
which follow (the presenter’s) hand around, very distracting”.

Additionally, 60% of the audience found Maestro’s insistence on monochromatic
slides to be less than ideal, but these results are not statistically significant (p =
0.169). Recall that Monochromatic slides are necessary in order to prevent the
hand tracker from mistaking slide content for the colored gloves. As was noted by
one of the students, the acceptability of monochromatic slides depends upon the
material being presented.

Finally, this section of the questionnaire probed the audience’s opinion regard-
ing Maestro’s bimanual gestures. In this case the responses were evenly divided:
32 participants accepted that bimanual gestures were “as natural as those that in-
volve only one hand”, while another 32 participants rejected the statement. As for
open-ended feedback, one student complained that “the use of 2 hands seems cum-
bersome”. This result is interesting because Maestro’s two-handed gestures, such
as “zoom into figure”, were designed to closely match numerous naturally occurring
gestures witnessed in the observational study (see Chapter 3). Even when based
on natural gestures, half the audience found bimanual gestures to appear artificial.

These results clearly indicate the importance of moving to a hand-tracking tech-
nology that does not require the use of gloves or monochromatic slides. They also
reinforce the challenge of providing affordances to the presenter without distracting
the audience. In Maestro’s case, the context-sensitive cursors were not sufficiently
subtle to achieve this objective.

5.2.5 Evaluating the gesture recognizer

The final section of the questionnaire sought to evaluate the perceived accuracy
of Maestro’s gesture recognizer. Results are presented in figures 5.4a - 5.4e, and
in table 5.3b. In this section of the questionnaire, we distinguish the “next slide”
and “previous slide” gestures from the other gestures, because these two gestures
correspond to the two most commonly used commands. The recognizer’s accuracy
for the “next slide” and “previous slide” gestures was perceived by the audience as
being “good” (68% rated it “good” or better, p = 0.007). However, about the same
number of participants rated the other gestures as being recognized with “poor” or
worse accuracy.

In assessing these results, we note that a controlled test of Maestro’s gesture
recognizer found that 86% of gestures were correctly recognized for new users,
increasing to 96% for expert users. In both cases, fewer than 1% of all gesture
occurrences were false positives. These recognition results compare favorably to
other gesture-based systems [2, 28], and are discussed in detail in Chapter 8. While
we do not have recognition rates for the classroom deployment, the questionnaire
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S4. “The staging area (a region to the left of every slide, where many gestures are
performed) does not detract from the visual appearance of the slideshow.”

S5. “The layout of the slides, excluding the staging area, is visually appealing.”

S6. “The red and blue dots, which indicate where the presenter is pointing, are
not distracting.”

S7. “The use of red and blue gloves is not distracting.”

S8. “It is acceptable that the slides are monochromatic (black and white) since
color does not add much to the presentation.”

S9. “Maestro’s two-handed gestures appear just as natural as those that involve
only one hand.”

(a) Survey statements

Descriptive Statistics Sign Test T-Test
Median Mode % Successes p-value µ̂ σ̂ p-value

S4. 3 (agree) 3 (agree) 62.5% 0.060 2.70 0.71 0.025
S5. 3 (agree) 3 (agree) 85.5% < 0.001 2.92 0.58 < 0.001
S6. 2 (disagree) 2 (disagree) 38.7% 0.098 2.24 0.90 0.027
S7. 2 (disagree) 2 (disagree) 37.5% 0.060 2.16 0.84 0.002
S8. 2 (disagree) 2 (disagree) 40.6% 0.169 2.28 0.72 0.018
S9. 2.5 (divided) 2.5 (divided) 50.0% 1.00 2.48 0.64 0.846

(b) Descriptive statistics and statistical test results of survey responses.

Table 5.2: Survey results for statements about Maestro’s visual appearance. Items
in bold correspond to statistically significant results.
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(a) S4: “The staging area (a region to the left of every slide, where many gestures are
performed) does not detract from the visual appearance of the slideshow.”
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Figure 5.3: Responses to various statements regarding Maestro’s appearance.
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Figure 5.3: (Continued) Responses to various statements regarding Maestro’s ap-
pearance.
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results indicate that recognition errors are quite distracting, and that a much better
accuracy must be attained.

In terms of the types of errors that do occur, the audience perceived false neg-
atives as occurring more frequently than false positives (p = 0.047). This echoes
the quantitative recognition results reported above, and is an important result be-
cause we explicitly constructed the gesture recognizer to favor false negatives over
false positives. The motivation for engineering this bias is well summarized by one
student who commented:

(False negatives) are almost never distracting because (it is) easy to re-
sume (the) train of thought. (False positives) are frequently distracting
because the class laughed and the presenter was oblivious (to the error).

We were also interested in the perceived accuracy of the hand tracking system.
Participants were asked to rate the accuracy of the system when performing preci-
sion targeting tasks (such as pointing to text). Here 87% of the audience responded
that the accuracy was good or better, representing a highly statistically significant
result (p-value < 0.001).

Finally, participants were also asked to rate the responsiveness of the system.
Specifically, audience members were asked to rate the latency between the perfor-
mance of a gesture and the system response, and the latency between the hand
motion and the cursor. In both cases, the system responsiveness was considered to
be good or better, but results for the former suggest a trend rather than statistical
significance (63%, p = 0.056; and 67%, p = 0.011, respectively).
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S10. “The accuracy of the gesture recognizer when performing the next slide, and
previous slide gestures.”

S11. “The accuracy of the gesture recognizer when performing other gestures such
as zoom into and zoom out of figures, etc..”

S12. “The accuracy of the gesture recognizer when performing precision targeting,
such as pointing to text.”

S13. “The delay between performing a gesture and the system’s response (e.g:
changing to the next slide)”

S14. “The delay between the hand motion, and the motion of the onscreen cursors.”

(a) Survey statements

Descriptive Statistics Sign Test T-Test
Median Mode % Successes p-value µ̂ σ̂ p-value

S10. 3 (good) 3 (good) 67.7% 0.007 2.81 0.74 0.002
S11. 2 (poor) 2 (poor) 32.8% 0.010 2.26 0.57 0.002
S12. 3 (good) 3 (good) 87.1% < 0.001 3.10 0.65 < 0.001
S13. 3 (good) 3 (good) 62.9% 0.056 2.77 0.77 0.007
S14. 3 (good) 3 (good) 66.7% 0.011 2.76 0.67 0.003

(b) Descriptive statistics and statistical test results of survey responses.

Table 5.3: Survey results for statements about Maestro’s gesture recognizer. Items
in bold correspond to statistically significant results.
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(a) S10: “The accuracy of the gesture recognizer when performing the next slide, and previous
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0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

of
 p

ar
tic

ip
an

ts

Terrible Poor Good Excellent Negative Positive

1.61%
(1 / 62)

11.29%
(7 / 62)

62.90%
(39 / 62)

24.19%
(15 / 62)

12.90%
(8 / 62)

87.10%
(54 / 62)

(c) S12: “The accuracy of the gesture recognizer when performing precision targeting, such
as pointing to text.”

Figure 5.4: Responses to various statements regarding Maestro’s gesture recognizer.
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(e) S14: “The delay between the hand motion, and the motion of the onscreen cursors.”

Figure 5.4: (Continued) Responses to various statements regarding Maestro’s ges-
ture recognizer.
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5.3 Observations and open-ended feedback

In addition to the statistical results derived from the audience questionnaire, we
were also interested in the observations and feedback provided by the presenter,
the audience, and the observer who was taking notes. We first present some of the
more general comments provided by the audience. We then reflect on what the
presenter found useful.

5.3.1 Audience feedback

Several audience comments, specific to certain features or properties of Maestro,
have already been presented in the previous sections. This section lists more general
audience comments regarding the use of Maestro as a presentation medium. In this
regard, comments are both positive and negative, and closely match the conclusions
derived from the survey results. Some of the more thoughtful comments are listed
below:

The system appeared to work fairly well, with some obvious issues with
precision. The fact that the presenter needs to make large obvious
movements and wear bright-colored gloves can be distracting from the
actual content. I did like the ability to zoom in on images and highlight
points.

Is it really that much better than an average wireless remote? I haven’t
decided.

(Maestro) allowed the presenter to present material without having to
directly interact with the computer, and it has advantages over remote
devices because of an increase in the range of functions.

Having a remote to switch slides is sufficient (...) and just as effective
as Maestro.

5.3.2 Useful software features

Echoing the questionnaire results and audience feedback, the presenter found the
ability to selectively enlarge content and highlight talking points to be the two most
useful features of Maestro. We describe how each feature was used in practice.

Figures were frequently embedded in slides next to bullet points. After giving
an introduction to the slide’s content, figures were often enlarged to full screen,
enabling the audience to see greater detail as the presenter described specific el-
ements of the figure. As used, this ability to provide an overview, then enlarge
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figures, afforded a “focus plus context” presentation style that was missed when
moving back to PowerPoint slides. While similar effects could be achieved using
PowerPoint (e.g., by scripting a series of animations), Maestro enabled this dynamic
style of presentation to unfold at presentation time. This ability to dynamically
interact with content on an as-needed basis, with no requirement to script these
interactions, is one of the major strengths of this system.

While the questionnaire revealed that the audience responded positively to bul-
let highlighting, the presenter found Maestro’s implementation useful in bringing
attention to a set of bullet points all at once. In particular, Maestro implements
a gradual fade-out of highlighted points. This enabled the presenter to sweep his
hand across a range of points, to highlight them all at once. Note that this wav-
ing or sweeping gesture, for grouping objects, was also noted in the observational
study as serving a similar purpose. This mass-highlighting of bullet points was not
planned for, but became a welcome emergent feature of the system.

5.3.3 Discussion of the survey results and open-ended feed-
back

From the survey results, and open-ended feedback, we find that the audience re-
sponded quite well to gestures that interact with slide content such as highlighting
bullet points and zooming into figures. The presenter was also enthusiastic about
these features. These positive results are in spite of a general perception that
the gesture recognizer has poor performance in recognizing these gestures. This
strongly suggests that gesture-based presentation systems benefit from enabling
content-centric gestures.

At the same time, the benefits of Maestro’s navigation gestures are less clear; the
audience responded poorly to scrollable slides, and the utility of the slide carousel
was thrown into question (since there was never a need to use this feature during the
two-week trial). Of course, the “next slide” and “previous slide” gestures were used
quite frequently, and were perceived as being recognized with good accuracy; but,
these commands are available on any wireless presentation remote. Since remotes
are already both efficient and reliable, and because natural gestures typically arise
only when the presenter is in the midst of explaining a slide, it is difficult to argue
for a gesture-based alternative to issuing these two commands.

Finally, the survey results reinforce the challenge of providing feedback an af-
fordances to the presenter without distracting the audience. With Maestro, we felt
that subtle affordances could be provided to the presenter using small translucent
cursors. Despite our best efforts, the majority of the audience reported that these
cursors were distracting.
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5.4 Side effects on presentation dynamics

While the ability to directly interact with content proved useful, Maestro’s require-
ment that all interaction occur through gestures had a number of unintended side
effects. These issues can be summarized as the anchor problem; the field-of-view
problem; and, the introduction of a no-fly zone. We describe each in turn.

The anchor problem

One of the most visible effects of the system was that it tended to “anchor” the
presenter next to the screen so he could control the presentation (e.g., advance
slides). While this side effect was previously noted by Cao et al. in [5], this anchoring
led to a number of unexpected outcomes, which we expand upon.

Maestro’s placement of the staging area caused the presenter to locate himself
just outside the edge of the screen. However, because the presenter must frequently
face the screen to ensure that gestures are performed on their intended targets, this
positioning encouraged the presenter to angle his body away from part of the class.
This pivoting was not always corrected, leading the presenter to miss questions from
students not in his field of view. Since the staging area was always incorporated
into the left margin of the slides, it was always the same potion of the class whose
questions were missed. In contrast, the location of the lectern (and, hence, laptop)
in the corner of the room provided a clear view of the entire class. This finding
strongly suggests the need to reexamine location-independent navigation gestures,
or, at the very least, the ability to configure the system so it can be controlled from
either side of the presentation screen.

The field-of-view problem

The tendency for the presenter to anchor himself next to the screen also made
it difficult for the presenter to see all of the content being projected – what we
term the field-of-view problem. After advancing to the next slide, the presenter
would sometimes need to step back 4-5 feet from the screen to be able to see all
of the slide’s contents. From the audience’s perspective, this behavior caused an
obvious break from the presentation flow, and could be interpreted as the presenter
being unprepared (when in fact the presenter simply needed to recall the points
he wished to make). In contrast, when giving a presentation using a keyboard or
remote control, the presenter was typically in a position to easily view each new
slide in its entirety, whether it was on the laptop or projection screen. Glancing at
a slide in these latter contexts is far less distracting since the presenter does not
need to make a visible effort to look at the slide.
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The no-fly zone problem

Finally, the design of the gesture recognition system also created a no-fly zone – a
volume of space that the presenter could not enter without the risk of distracting the
audience. Maestro was designed with the assumption that the presenter normally
stands to the side of the projected content, only occasionally entering the projected
content to selectively interact with elements in the slide. This is a safe assumption
to make, since the presenter typically wishes the audience to be able to view the
content without interference. However, after the first day of lecturing, the presenter
found himself forgetting about the system and fully immersing himself in the act of
lecturing. At times, he would wander in front of the projected content to address the
class, gesticulating as he did so. This would lead to constant activity in the slides
behind him, with bullet points automatically highlighting and un-highlighting as
the presenter’s hands unknowingly moved over these objects. Recall that Maestro
instantly and automatically highlights bullet points whenever the hands are within
their proximity (similar to the “mouse over” event in WIMP interfaces). This
created an obvious distraction for the class. Recognizing this issue, the presenter
consciously reduced his travel into and through this area. Accordingly, this no-fly
zone served to further limit the presenter’s movements.

5.5 Discussion

In this chapter we presented results from a prolonged real-world evaluation of Mae-
stro. Our study suggests that gesture-based interaction leads to more interactive,
but less efficient, presentations in comparison to PowerPoint. Additionally, the
study found that Maestro’s content-centric gestures were welcomed by both the pre-
senter and the audience alike. However, the benefits of using gestures to navigate
a presentation are less clear; especially when one considers that existing wireless
remotes already enable efficient and reliable access to this functionality. Finally,
Maestro’s evaluation also illustrates some potential side effects of relying exclusively
on gesture-based control of presentations. These effects include the field-of-view,
anchoring, and no-fly zone problems.

The results of this work suggest several areas for future research. First, and
foremost, multimodal interaction seems to hold great promise in this area. For
navigating slides a wireless remote, or even a keyboard, might be the optimal
solution. This traditional form of interaction is reliable and it leads to efficient
presentations. On the other hand, gestures seem well suited for supporting rich,
direct interaction with slide content. Creating a system that elegantly balances
the multiple input modalities should result in a more optimal experience for both
presenters and audience members.

Given the value we found for enhancing communication through content ges-
tures, there is a need to more fully explore this design space. For example, gestures
could be used to manipulate the parameters of a mathematical plot or simulation.
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The benefits of such manipulations are well articulated by Douglas Zongker and
David Salesin in their Slithy presentation system [70]. Slithy makes heavy use of
parameterized diagrams and interactive objects using traditional input mechanisms.
Extending this type of system to afford gesture-based control has yet to be explored.

Finally, while it is certainly important to evaluate Maestro based on feedback
provided by both the audience and the presenter, the actual performance of Mae-
stro’s gesture recognizer must also be carefully evaluated in a controlled setting.
Part II of this document, which begins in the next chapter, will report the results
of this evaluation. In this latter section of the document, a principled gesture rec-
ognizer will be presented which is designed to replace the ad-hoc recognizer used
thus far. These two recognizers will be directly compared in a controlled laboratory
test, and the accuracy of both recognizers will be reported. It suffices to say, it is
difficult to significantly outperform a finely tuned ad-hoc recognizer.

61





Part II

Gesture Recognition with
Discrete Hidden Markov Models
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Chapter 6

Discrete Hidden Markov Models
for Modeling Gestures

In previous chapters, it was noted that Maestro’s original gesture recognizer was
“ad-hoc”, and involved heuristic template matching. Various features of the hand
trajectories (such as path length and center of mass) were compared to manually
established range constraints. This simple approach allowed for rapid prototyping,
and appeared to be rather good at spotting gestures. However, the ad-hoc approach
is not generalizable and leaves much to be desired. In this chapter, we introduce
a recognizer based on discrete hidden Markov models which is more representative
of the state-of-the-art.

6.1 Introduction

The need to “fail-fast” when prototyping novel interfaces is well recognized in the
field of human-computer interaction. In other words, it is important to be able to
quickly identify and reject poor design choices in order to arrive at a final design. By
using mock-ups, wizard of Oz user trials and other low-cost prototyping techniques,
one can quickly arrive at a final design without investing too many resources in failed
approaches. In support of rapid prototyping, Maestro was initially designed to use
a collection of ad-hoc templates and heuristics for recognizing various gestures.
While this approach proved to be an effective means for prototyping, it leaves
much to be desired for a final system. In particular, the “ad-hoc” approach is not
generalizable, requiring new heuristics to be developed for each new gesture that is
to be recognized.

Upon completing the real-world evaluation of Maestro, we sought to develop
a more principled and generalizable gesture-recognizer that is able to recognize
Maestro’s gesture language with similar or better accuracy as compared to the ad-
hoc approach. In the literature, there are many approaches to recognizing hand
gestures including dynamic time warping [10], time delay neural network [67], condi-
tional density propagation (using particle filtering) [3], and various forms of hidden
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Markov models [28, 65, 66, 48]. These approaches are well described in numerous
survey papers regarding gesture-recognition [44, 38]. For Maestro, we elected to use
a discrete hidden Markov model, since this method supports a relatively straight-
forward approach to spotting gestures embedded in longer motion sequences. In the
remaining sections of this chapter, we review hidden Markov models, and present
the DHMMs used to model gestures in Maestro.

6.2 Discrete hidden Markov models

Discrete hidden Markov models (DHMMs) are graphical models used for modeling
sequential observations, such as the evolution of signals over time. These models
were first described in the late 1960’s and were almost immediately applied to the
problem of speech recognition [47]. Since then, hidden Markov models have been
widely applied to gesture-recognition [28, 66, 48, 65, 11]. An excellent description
of these models is presented by Lawrence Rabiner in [47].

Formally, DHMMs adhere to the dynamic Bayesian network depicted in figure
6.1b, and consist of the following components:

• A set of N states S = {s1, s2, . . . , sN}

• A discrete alphabet of M output symbols Σ = {f1, f2, . . . , fM}

• A prior distribution P (Q), where Q is a random variable over the set of
initial states. Since there are finitely many states, the prior probabilities can
be summarized by the stochastic vector π ∈ RN whose ith entry is defined as
follows: πi = P (Q = si).

• A state transition distribution P (Qt+1|Qt) where Qt, and Qt+1 are latent ran-
dom variables denoting the model’s state at times t and t + 1 respectively.
Note that the transition distribution is conditioned only on the previous state
Qt. The resulting transition distributions can be summarized by the stochas-
tic matrix A = [aij], where aij = P (Qt+1 = sj|Qt = si).

• A observation distribution P (Ot|Qt) where Ot is an observable random vari-
able denoting the symbol from the alphabet that is generated by the model
at time t. Note that the observation distribution is conditioned only on
the current state Qt. Each state has one conditional observation distribu-
tion, and the set of all observation distributions is summarized by the set
B = {bi(j), i ∈ 1, 2, . . . , N}, where bi(j) = P (Ot = fj|Qt = si)

• Finally, the notation λ = {π,A,B} denotes the full set of parameters for any
given DHMM.
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It is also sometimes useful to interpret discrete hidden Markov models as being
similar to Moore finite state machines (although a Mealy machine formulation is
also possible). Like a Moore machine, a DHMM can be depicted graphically (as in
figure 6.1a) where nodes depict the DHMM’s states, and the arcs depict possible
transitions from one state to the next. This should not be confused with the
Bayesian network (figure 6.1b). In general, we use a state machine graph when
discussing a DHMM’s topology, and the Bayesian network graph when reasoning
about conditional independence. As with a Moore machine, DHMMs output one
symbol from the discrete output alphabet upon arriving at each state. Again, the
output at time t depends only on the Machine’s state at that time (and not on the
transition taken to arrive at the state). However, unlike a Moore machine, a state’s
output is selected at random from the state-specific output distribution. Moreover,
the DHMM’s state transitions are also governed by a random process, rather than
by an input sequence.

Regardless of which description one wishes to use when picturing hidden Markov
models, it is important to keep in mind the properties that give rise to their name-
sake; first, the state sequence evolves according to a 1st-order Markov process, with
each state transition depending only on the previous state; secondly, the state se-
quence is always hidden from the observer, who only has knowledge of the output
sequence; the state sequence must be inferred from the observations.

6.2.1 Filtering, decoding, and parameter estimation

Rabiner’s tutorial on hidden Markov models [47] lists three basic problems for
HMMs whose solutions have many practical applications. These problems in-
clude filtering, decoding and parameter estimation. Again, we present only a brief
overview of these problems, deferring a more thorough treatment to Rabiner’s tu-
torial and other works of interest [32].

Filtering

Filtering involves determining the probability of the observation sequence O1:T =
O1 O2 . . . Ot . . . OT , given the model parameters λ, i.e., P (O1:T |λ). For a given
state sequence Q1:T = Q1 Q2 . . . Qt . . . QT then:

P (O1:T , Q1:T |λ) =

P (Q1|λ)P (O1|Q1, λ)P (Q2|Q1, λ)P (O2|Q2, λ) . . .

P (QT |QT−1, λ)P (OT |QT , λ) (6.1)

Thus P (O1:T |λ) can be obtained through marginalization, by summing out all pos-
sible state sequences. However, this computation is intractable, since there are NT
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(a) A two-state discrete hidden Markov model, depicted graphically in a manner similar to a
Moore state machine.

...Q1 Q2 Qt QT...

O1 O2 Ot OT
(b) A Bayesian network for a hidden Markov model.

Figure 6.1: A two-state DHMM viewed both as a stochastic state machine, and as a
dynamic Bayesian network. The state machine graph 6.1a is used when describing
the model topology, while the Bayesian network graph 6.1b is used when reasoning
about conditional independence.
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possible state sequences for an observation sequence of length T (and where N is the
number of states). Thankfully, there exists the Forward-algorithm for comput-
ing P (O1:T |λ) in O(N2T ) computations. The algorithm works by passing a forward
message along a state-time lattice. The forward message αt(i) = P (O1:t, Qt = si|λ)
represents the probability of observing the first t observations, and ending the state
sequence in state st. Following Rabiner’s tutorial, αt(i) can be computed induc-
tively as follows:

1. Base case, where t = 1.

α1(i) = πibi(O1), i ∈ {1, 2, . . . , N} (6.2)

2. Inductive step, 1 < t < T .

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1), j ∈ {1, 2, . . . , N} (6.3)

3. Termination

P (O1:T |λ) =
N∑
i=1

αT (i) (6.4)

Decoding

Another task common with DHMMs is decoding. Decoding addresses the problem
of determining the state-sequence q∗1:T which “best” explains the observation se-
quence. Typically, this means finding the state sequence which, together with the
observations, maximizes the likelihood function:

q∗1:t = argmaxq1:TP (q1:T , O1:T |λ) (6.5)

The solution to this problem can be computed efficiently using the Viterbi algo-
rithm, which is a dynamic programming algorithm that again relies on the state-
time lattice. In fact, the Viterbi algorithm is very similar to the aforementioned
Forward-algorithm, requiring only a minor modification and some extra book-
keeping to allow for backtracking.

Parameter estimation

The final task common when using DHMMs is that of learning the model parame-
ters, λ, which best account for a given sequence of observations (and a given model
topology). Using a maximum likelihood approach, λ can be estimated as follows:
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λML = argmaxλP (O1:T |λ) (6.6)

Unfortunately, there is no known closed-form solution to this optimization prob-
lem. However, given an initial estimate λi of the model parameters, the Baum-
Welch reestimation procedure allows the computation of λ′i whose likelihood is
greater than or equal to that of λi. By iteratively applying this reestimation proce-
dure, the model parameters are moved towards a local maximum of the likelihood
function until convergence. As usual, repeating the procedure with different initial
conditions may lead to other local maxima, and may help broaden the search.

6.3 Model topologies for gestures

The general definition of a DHMM from Section 6.2 allows state transitions to occur
between any pair of states. Such DHMMs are known as “ergodic”, and have a fully
connected state topology (i.e., a full state transition matrix A). However, in gesture
recognition (and also in speech recognition), it is useful to consider other topologies;
specifically, it is common to use a left-right topology [47, 28, 66, 48] where state si
is connected to state sj only if j ≥ i. This results in an upper-triangular transition
matrix A. Left-right models are ideal for modeling gestures and spoken words, both
of which can be thought of as steadily progressing through a series of states. For
instance, gestures often have a clear beginning, middle and end. It is also common
to limit the number of states that can be skipped when moving from one state to
the next (a so-called “constrained jump” model). Here, state si is connected to
state sj only if 0 ≤ j − i ≤ ∆.

In Maestro, all gestures are modeled using a 4-state constrained jump DHMM
where ∆ = 1. This topology is depicted in figure 6.3. Note that the model includes
a 5th non-emitting final state. This state is only entered after observing the final
observation OT . The use of a final state is quite common, and forces finite observa-
tion sequences to align with the full model. Conceptually, one can think of all finite
observation sequences as being terminated by an “end of sequence” observation,
which can only be generated by the final state.

s1 s2 s3 s4 F

Figure 6.2: Topology of the four-state constrained jump DHMM used for modeling
gestures in Maestro. The 5th state “F” is a final non-emitting state.
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6.4 Feature extraction for gestures

In the previous section, we presented the topology of the DHMMs used by Maestro
to model gestures. In this section, we describe how Maestro’s computer-vision
system generates the discrete observations required by the discrete hidden Markov
model.

Maestro’s computer vision system reports on the positions of both the red and
blue gloves at a rate of 15 times per second. Although both gloves occupy a sizable
area in every camera frame, the position of each glove is summarized by a single
point in space; specifically, the rightmost point on the glove’s contour (which is

similar to the method used in [15]). Let ~Rt = [R
(x)
t , R

(y)
t ]T , and ~Bt = [B

(x)
t , B

(y)
t ]T

be the positions of the red and blue gloves respectively at time t. Together ~Rt and
~Bt can be used as basic features for a continuous hidden Markov model. However,
the use of these features is ill-advised. To illustrate this point, consider Maestro’s
“undo” gesture (figure 4.1h), which is performed in the following four stages:

1. start with one hand at rest

2. move to the right with positive horizontal velocity (and zero vertical velocity)

3. move to the left with negative horizontal velocity

4. end in a state of rest upon returning to the initial position

This gesture seems well suited to be modeled with a 4-state HMM - one state
for each of the aforementioned steps. However, when using positions ~Rt and ~Bt

as features, the second and third states of the HMM pose a modeling challenge:
While in the second state, the x-coordinate of the hand-position is monotonically
increasing with time; and, when in the third state, it is monotonically decreasing.
However, an HMM’s conditional observation distributions P (Ot|Qt) cannot take
into account the passage of time when assigning probabilities to observations; there
is an implicit assumption that the conditional observation distributions do not
change with time.

To combat this issue, numerous researchers have suggested using a measure
known as “direction” or “turning angle” as a more stable feature [28, 41, 8]. Con-

sider the pair of sequential observations ~Rt−1, ~Rt. The turning angle θ
(R)
t is defined

as the angular component of the finite difference ~Rt− ~Rt−1, when expressed in polar
coordinates:

θ
(R)
t = atan2

(
R

(y)
t −R

(y)
t−1, R

(x)
t −R

(x)
t−1

)
(6.7)

Here, the function atan2 (y, x) is a variant of the arc tangent function which takes
into account the quadrant in which the point (x, y) lies. This function is very useful
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for converting between cartesian and polar coordinates, was first introduced in the
Fortran programming language, and has since become a standard math operator
in many other programming languages (e.g., C, Java, Matlab) [60].

The turning angle θ
(B)
t of the blue glove is defined similarly. Initially, both θ

(R)
1 and

θ
(B)
1 are undefined since there are no previous observations from which to compute

the finite difference. Additionally, the red and blue gloves may not be present at
all times. Suppose that the red glove is not detected at time t, then neither θ

(R)
t

nor θ
(R)
t+1 are defined.

Using the turning angle feature, it becomes much easier to accurately model lin-
ear gestures. Continuing the “undo” gesture example, the second state of the model
would have a conditional observation distribution with one mode centered around
θt ≈ 0◦. This would represent the hand moving to the right. Similarly, the third
state would have a conditional observation distribution with one mode centered
around θt ≈ 180◦. In general, turning angle is an excellent feature for modeling
piecewise linear gestures. Of course, the turning angle must be discretized before
this feature can be used in a discrete hidden Markov model. This discretization is
described in the next section.

Discrete turning angle

If the turning angle θ
(R)
t is constrained to the range [0◦, 360◦), the feature can be

discretized by simply dividing the range into equal sized bins (e.g., 12 bins, each

accounting for 30◦). The discretization Θ
(R)
t for θ

(R)
t is simply the index of the bin

to which the continuous turning angle is assigned (figure 6.3a). This approach to
discretizing the turning angle is very straightforward, and has been used previously
in [28].

Additionally, we noted earlier that the turning angle is undefined in the cases
where the glove is not detected. Moreover, the measure itself becomes unstable
when the hands are at, or are near, rest. To resolve these issues in the discretization,
we simply add one bin for each of these cases. This requires thresholding the finite
difference ||Rt − Rt−1||2 in order to determine when the glove is considered to be
“near rest”.

Regional context

While the turning angle feature captures the motion of the hands, it provides no
information regarding the spatial context in which the motion occurs. As mentioned
in Chapter 4, many of Maestro’s gestures are contextualized by particular targets
or regions of interest (ROIs) such as bullet-points or figures. Consequently, we
compute a discrete feature which captures this spatial information. At each instant,
the hands can find themselves in one of three spatial contexts known as “zones”:

• Zone 1: “Inside” the region of interest
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• Zone 2: “Near” the region of interest (i.e., within ε pixels from the region,
either horizontally or vertically, as depicted in figure 6.3b).

• Zone 3: “Far” from the region of interest (i.e., more than ε pixels from the
region, either horizontally or vertically).

The feature Z
(R)
t encodes the zone in which the red glove is found at time t. If

the red glove is not detected at time t, then Z
(R)
t takes on a 4th value indicating

that the hand is absent. Z
(B)
t is defined similarly, but for the blue glove.

Spatial relation between hands

As mentioned in the previous section, the turning angle captures the motion of the
hands, but not their configuration with respect to one-another. For example, it
provides no indication of whether the hands are together, or if they are collinear
along a column or row of the display, etc. To capture this information, we introduce
the spatial relation feature σt which is similar to the turning angle features but is
computed using the difference vector ~Rt − ~Bt rather than ~Rt−1 − ~Rt. In this sense,
σt encodes the direction of the vector pointing from the blue glove towards the red
glove. Importantly, σt becomes unstable when ||~Rt − ~Bt||2 is small. These short
vectors indicate that the hands are “together”.

6.4.1 Maestro’s conditional observation distributions

At this point, the observations are not discrete integers but are instead discrete
feature vectors ~f = [Θ

(R)
t , Z

(R)
t ,Θ

(B)
t , Z

(B)
t , σt]

T . Given our current definition of a
simple DHMM, it is unclear how to use feature vectors as observations. One possible
solution is to use vector quantization or a “code book” to convert feature vectors
into unique integers [66, 45, 47]. With a finite number of possible feature vectors,
a simple code book can be constructed by enumerating the vectors, and using a
vector’s index in the enumeration as its codeword. However, this simple approach
is dreadfully wasteful given the number of possible feature vectors. Consider that
there are 14 possible values for each of the turning angle features Θ

(R)
t and Θ

(B)
t , 4

possible values for each of the zone features Z
(R)
t and Z

(B)
t , and 14 more possibilities

for the spatial relationship feature σt. Together, this makes for 143 × 42 = 43, 904
possible feature vectors. An HMM with 4 states would then require more than
175,000 parameters. Learning such a model would require an immense amount of
training data in order to acquire good approximations for each of these parameters.

One way to resolve this issue is to assume that each of the feature vector’s
components are conditionally independent given the HMM state (as in figure 6.4a).
This reduces the number of parameters to 50 for each state – an immense savings!
However, such a factorization is unwarranted since the various components of ~ft
are not conditionally independent. For example, if the feature Z

(R)
t indicates that
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(a) The turning angle feature, and it’s discretization.
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Figure 6.3: The discrete turning angle and zone features used for modeling gestures.
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the red glove was not detected, then it follows that θ
(R)
t will take on a similar “not

detected” value. Similarly, if Z
(R)
t indicates that the red glove is “inside” a region

of interest, while Z
(B)
t indicates that the blue glove is “far” from the region of

interest, then we should not expect the feature σt to take on a value indicating that
the hands are close together.

In Maestro, the conditional observation distributions P (~ft|Qt) are factored ac-
cording to the Bayesian network depicted in figure 6.4b. This factorizing does not
require one to assume inappropriate conditional independencies, but requires the
addition of two new binary random variables D

(R)
t and D

(B)
t . These random vari-

ables indicate if the red and blue gloves have been detected at time t. As a result,
the observation distributions P (~ft|Qt) each require only 300 parameters, and are
factored as follows:

P ([D
(R)
t ,Θ

(R)
t , Z

(R)
t , D

(B)
t ,Θ

(B)
t , Z

(B)
t , σt]

T |Qt) =

P (D
(R)
t |Qt)P (Θ

(R)
t |D

(R)
t , Qt)P (Z

(R)
t |D

(R)
t , Qt)×

P (D
(B)
t |Qt)P (Θ

(B)
t |D

(B)
t , Qt)P (Z

(B)
t |D

(B)
t , Qt)×

P (σt|Z(R)
t , Z

(B)
t , Qt) (6.8)

6.5 Discussion

This chapter provided a brief background into discrete hidden Markov models, and
presented the specific models and features used for representing gestures in Maestro.
Importantly, Maestro’s DHMMs make use of a factored observation distribution
which reduces the number of parameters needed to model each gesture. Addition-
ally, these observation distributions begin to capture many of the non-accidental
motions which Maestro’s gestures were originally designed to incorporate (as de-
scribed in Chapter 4). For example, axis-aligned hand motion is well-captured by
an observation distribution where the turning angle features are explained by com-
pact modes centered around the directions corresponding with the axes (i.e.,0◦, 90◦,
180◦ or 270◦). Similarly, many non-accidental aspects of bimanual interaction are
also well represented in this way (e.g, cases where the hands are moving in parallel,
or collinearly, induce compact modes in the distributions over the spatial relation
feature σt). Each of these compact observation distributions corresponds to a highly
specific motion event. The sequence of such motion events is then dictated by the
topology of the encompassing DHMM. As a result, each gesture model accounts
for only a very particular set of hand motion. Nonetheless, differentiating gestures
from other hand motions is a difficult and complex task. In the next chapter, we
describe how Maestro uses the aforementioned DHMMs to spot meaningful gestures
that are embedded in sequences of unconstrained hand motion.

75



...Qt...

θt
(B)θ t

(R)
Z t
(R) Z t

(B) σ t
(a) Factorization of the conditional observation distribution

P (~ft|Qt = st) where the features are mutually conditionally
independent given the state st. Some of the assumed condi-
tional independencies are unwarranted.
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(b) A more conservative factorization of the conditional observa-
tion distribution.

Figure 6.4: Possible factorizations of the conditional observation distributions
P (~ft|Qt = st).
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Chapter 7

Gesture Spotting

The previous chapter described the discrete hidden Markov models used by Maestro
to model gestures. This chapter describes the application of these models to the
problem of spotting gestures in continuous motion sequences. In order to highlight
the challenges, and to motivate our approach, we begin with the far simpler problem
of isolated gesture recognition. This problem and its solution are then contrasted
with the more challenging problem of gesture spotting.

7.1 Isolated gesture recognition with DHMMs

In isolated gesture recognition, the observation sequence is assumed to correspond
to the complete performance of exactly one gesture. This scenario is frequently
applied when recognizing written gestures, where pen contact with the writing
surface provides a clear indication of where each gesture begins and ends. Isolated
gesture recognition is closely related to isolate word recognition in spoken language,
where silences between spoken words are used to locate word boundaries [54]. In
both cases, the recognition task is simply a closed-world classification problem. For
gesture recognition, each observation sequence is attributed to a specific gesture
in the gesture vocabulary G = {G1, G2, . . . GN}. Suppose that the observation
sequence O1:T is to be classified. If the gesture prior probabilities P (Gi) are known,
then classification can proceed using the maximum a posteriori (MAP) decision
rule:

GMAP = argmaxGi∈GP (O1:T |Gi)P (Gi) (7.1)

If the prior probabilities are unknown, then a maximum likelihood (ML) de-
cision rule can be used instead. This decision rule effectively assigns equal prior
probability to each of the gestures:

GML = argmaxGi∈GP (O1:T |Gi) (7.2)
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In both cases, the likelihood P (O1:T |Gi) is given by filtering using the corre-
sponding hidden Markov model with parameters λi. Recall that the Forward-
Algorithm provides an efficient method for calculating P (O1:T |λi).

7.2 Isolated gesture recognition with “non-gesture”

rejection

In isolated gesture recognition, the onus of isolating the gesture instances falls on
the user of the system. Again, in the pen-based example described in the previous
section, the user indicates their intention to form a gesture by contacting the pen
with the writing surface. The gesture is then ended by releasing contact. In this
scenario, errors in segmentation are quite common. For example, the user may
initiate a gesture but abort the gesture mid-sequence. Alternatively, the user may
error when forming the gesture, or may initiate the gesture recognition process
entirely by mistake. These situations lead to misclassifications or false detections.
For this reason, it is desirable to be able to detect “non-gesture” sequences. One
possible approach is to use the MAP or ML criteria to find the best gesture model
λ∗, but to establish a likelihood threshold K in order to reject non-gestures:

Reject O1:T if P (O1:T |λ∗) < K (7.3)

In this context, the likelihood P (O1:T |λ∗) is treated as a confidence measure; if
the likelihood is too low, the classification is considered untrustworthy. The prob-
lem with this approach is that the likelihood tends to be highly dependent on the
sequence length T , decreasing quickly as T increases [28, 45, 49]. Consequently, it
is very difficult to establish a single likelihood threshold K that gives good perfor-
mance across the full range of temporal variability associated with the gesture.

While likelihood alone is a poor confidence measure, the idea of using a confi-
dence measure to reject non-gesture sequences is reasonable, and has been widely
used in the related field of speech recognition [49, 45, 63, 69]. As a result, confi-
dence measures have seen a great deal of attention in this literature (see [19] for a
good review). Unfortunately, the same cannot be said about gesture recognition.
One possible reason for this discrepancy is that, in speech recognition, language
models, grammar and other high-level constraints can be used as a basis for devel-
oping accurate confidence measures. With the exception of systems that recognize
sign language, gesture recognizers do not have this luxury. The remainder of this
section explores some confidence measures that are applicable to the problem of
gesture recognition.

One simple approach to transforming likelihood into a confidence measure is to
normalize the log-likelihood by dividing by the sequence length:

log P (O1:T |Gi) =
log P (O1:T |Gi)

T
(7.4)
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where,

P (O1:T |Gi) = (P (O1:T |Gi))
1/T (7.5)

This result can be interpreted as the average probability of each individual
observation in the sequence [45, 63]. As before, non-gesture sequences can be
rejected by applying a threshold to this confidence measure. While this approach
may account for sequence length, it remains problematic. Importantly, it treats all
observations equally, tending to overvalue generic observations, while undervaluing
observations that may be particularly informative. As an example, a sequence may
be assigned high confidence only because it exhibits properties that are common to
other gestures. In this case, the sequence’s specific classification is uncertain – yet
this uncertainty is not reflected by the confidence measure.

In contrast to the likelihood, the ideal confidence measure is simply the poste-
rior probability of the gesture given the observations [4, 19, 21], i.e., P (Gi|O1:T ).
This is an absolute measure of confidence ranging from 0 to 1. It is also context
independent, easy to interpret, and can be recovered using Bayes theorem:

P (Gi|O1:T ) =
P (O1:T |Gi)

P (O1:T )
P (Gi) (7.6)

It is also quite common to use only the quotient in the above equation, which
has been referred to as “normalized likelihood” [21]. Note that the denomina-
tor, P (O1:T ), is the prior probability of the observation sequence. Unfortunately,
P (O1:T ) is very difficult to model directly [4, 19].

An alternative approach is to compare the likelihood of the hypothesized classi-
fication Gh to the likelihood of a competing model G0. This amounts to a likelihood
ratio statistical test, where G0 is the null hypothesis. In this case, the null hypoth-
esis is rejected if:

P (O1:T |Gh)

P (O1:T |G0)
> Kc (7.7)

where Kc is the critical value of the test, while the ratio is itself a measure of con-
fidence. The argument for using this test is that if there is ambiguity in assessing
which model best fits the observations, the classification result is likely to be un-
reliable. The question is then which model should be used for G0. One common
approach is to develop an “anti-model”, Gi, for each gesture Gi. The anti-model al-
lows one to approximate the likelihood of the sequence given that the observations
do not correspond with the gesture (i.e., P (O1:T |Gi). In this case, the likelihood
ratio is related to the odds-ratio by the following equation:

P (Gi|O1:T )

P (Gi|O1:T )
=
P (O1:T |Gi)

P (O1:T |Gi)

P (Gi)

P (Gi)
(7.8)
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The odds-ratio is useful because it represents the odds that the observation
sequence was generated by the gesture model Gi.

Unfortunately, developing an accurate “anti-model” is about as difficult as de-
veloping a model for the observation prior P (O1:T ); after all the two are related
by:

P (O1:T |Gi) =
P (O1:T )− P (O1:T |Gi)P (Gi)

1− P (Gi)
(7.9)

Notice that all terms on the right-hand side of the equation are easily computed
except for the observation prior.

In practice, speech recognition systems often construct anti-models by modeling
one or a few words that are acoustically similar to the target keyword [4]. These
words are more likely to result in classification errors. This approach is similar to
“cohort normalization” in speaker verification systems, where the anti-models are
constructed from a cohort (i.e., a collection) of likely impostors [50, 16].

7.3 Continuous gesture recognition (“gesture spot-

ting”)

In continuous gesture recognition, it is not known where gestures start or end within
the observation sequence. In this environment, gestures must be both isolated (i.e.,
segmented) and recognized simultaneously. This problem is known as “gesture
spotting”, and is analogous to keyword spotting in speech recognition systems.
One simple approach is to explicitly test all possible subsequences of the observation
sequence. Subsequences which do not correctly isolate gestures can be rejected using
the confidence measure thresholding technique presented in the previous section
[63]. Since an exhaustive search over all possible subsequences is computationally
expensive, it is common to constrain the search to a fixed-length sliding window
[22]. In either case, many subsequences are tested, but only a few will correspond
to gestures. Consequently, the approach demands an accurate decision rule for
rejecting non-gesture segments.

In contrast to the sliding window approach, a much simpler and more efficient
approach is possible if one has access to a model for non-gestures. In other words,
we need a model for the distribution P (O1:T |BG), which is the likelihood of the ob-
servation sequence given that the observations were generated by some background
process rather than by the performance of any gesture. Here the background-model
should not be confused with the gesture-specific anti-models of the previous section.

In gesture or keyword spotting applications it is common to model P (O1:T |BG)
directly. If the background model is a hidden Markov model with parameters
λBG, then it is referred to as a “garbage” or “filler” model [64, 11]. Such models
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“close the world” since all segments of the input sequence can be explained either
by a gesture performance or by the background process. Consequently, a larger
composite DHMM (figure 7.1) can be devised for the entire observation sequence
[62, 11, 66, 28]. In this case, time-synchronous Viterbi decoding is often used to
establish the most likely state sequence through this DHMM for a given observation
sequence. This approach implicitly segments the observations into gesture and
background subsequences. Gestures are spotted when the Viterbi path passes from
beginning to end through a gesture model. Consequently, this larger DHMM is
referred to as the “gesture spotting network” [28].

Gesture 1

Gesture 2

Gesture N

Background

Figure 7.1: A generic gesture spotting network in which gestures and the back-
ground model are connected in parallel. The black dots represent non-emitting
states (also known as “null states”).

Unfortunately, it is quite difficult to devise a good background model for the
same reasons it is difficult to generate anti-models or models of the observation
prior: Non-gesture motion comes in “all shapes and sizes”, and training such a
model would involve an immense amount of training data. One way to mitigate
the problem is to factor the background model by directly modeling certain specific
types of non-gesture motion. A “catch-all” model can then be used to account
for the remaining possibilities. For example, when applied to keyword spotting in
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speech recognition, specific garbage models typically represent silences, pops, mi-
crophone hisses, and transmission noise [64]. The remaining non-keyword sequences
are likely to be words that are not found in the vocabulary. Such out-of-vocabulary
words can then be modeled by a process which simply explains word formation by
a random sequencing of phones (or triphones), where the probabilities associated
with each phone (or triphone) are learned from a corpus of non-keyword speech
samples [69]. Here, the explicit modeling of common non-keyword sequences (e.g.
silences) ensures that a large percentage of the observations will be accounted for
by dedicated models; while the factorization itself provides clues as to how to better
model the entire background process.

Finally, the Viterbi approach suffers from one important drawback: it provides
only the single most likely path through the gesture spotting network. There may be
other possible paths with similar likelihoods, but these are not reported. In most
cases, this is not a problem since the other high-likelihood candidates represent
only minor variations to the Viterbi path; however, there may be cases where other
high-likelihood paths pass through a different gesture, or through the background
portion of the model. As with isolated gesture recognition, cases that do not result
in a clearly superior solution suggest that the results may not be entirely reliable.
Again, a confidence measure can be applied to detect these cases, and can be used
to reject false positives. This is done in a post-processing step after the candidate
gesture has been spotted.

7.4 Gesture spotting in Maestro

Since Maestro must be able to spot gestures in continuous motion sequences, it uses
the Viterbi approach described in the previous section. Maestro’s gesture spotting
network (figure 7.2) includes one 4-state left-right DHMM for each gesture in the
gesture vocabulary (as described in Chapter 6). For factoring the garbage model,
Maestro uses a one-state “silence” model to account for sequences in which neither
hand is detected. Maestro also uses the catch-all model suggested by Lee et al.
in [28]. Lee’s catch-all model is based on the observation that each state of each
gesture model represents a known “substroke” or “sub-pattern” 1. Examples of sub-
strokes include periods of rest, or periods of linear motion in a particular direction,
etc. Substrokes are comparable to phones in speech recognition. Consequently,
the catch-all model simply explains all hand motion by an arbitrary ordering of
substrokes. It is constructed by combining all states from all gesture models into
one large ergodic (fully connected) DHMM. Since the duration of the substrokes is
important, the catch-all model retains the original self-transition probabilities of all
states. The remaining probability mass is evenly distributed among the remaining
inter-state transitions. In addition to including these substrokes, we found it useful
to include one state with a uniform observation distribution. This additional state

1Although Lee uses the terminology “threshold model” rather than “catch-all” model
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ensures that novel sub-patterns are not assigned a zero probability by the catch-all
model.

One important note is that the Viterbi gesture spotting approach has an unin-
tended consequence when used for real-time gesture recognition. Specifically, the
Viterbi path will not leave a state until the system is presented with evidence sug-
gesting that it do so. This behavior is by design, and is exactly what a proper
decoder should do. However, it means that a completed gesture will not be recog-
nized until the user begins performing the next gesture (or some other non-gesture
motion). This can cause what can only be described as a deadlock between the
user and the system; the user is waiting for acknowledgement before beginning the
next gesture, but the system cannot acknowledge the current gesture until the user
moves on. For example, suppose the final state of the “next slide” gesture repre-
sents a period of rest. Upon performing the gesture, users tend to remain in the
rest state until the gesture is recognized. Without any system acknowledgement,
the user will eventually assume the gesture was missed, and will try again. The
gesture will be recognized as soon as the user repositions to make his or her second
attempt. A response at this time is quite unexpected and confusing.

One possible solution to this problem is to recognize a gesture as soon as the
Viterbi path enters the gesture’s final state rather than waiting for the path to
exit; however, this would certainly be premature. Alternatively, one could define a
maximum length of time that the Viterbi path can spend in a gesture’s final state;
however, this would effectively condition a state transition on the time spent in the
state. The resulting model would no longer be an HMM. Maestro’s solution is to
acknowledge a gesture if the following two conditions hold:

• The Viterbi path ends in a gesture’s final state.

• The Viterbi path, extended to include a transition out of the gesture’s final
state, remains the most likely path. Note that this extra transition leads to
a non-emitting state (which does not consume an observation), and is thus a
valid state sequence for the observations.

Using this strategy, gestures are recognized as soon as possible. However, if too
little time is alloted to the gesture’s final sate, the Viterbi decoder may prefer an
alternative path leading through one of the garbage models.

As a final safeguard, once a potential gesture is isolated from the input sequence,
it is subjected to a confidence measure threshold as described in the previous sec-
tion. This is done is a post-processing step, after performing Viterbi decoding. The
confidence measure thresholding can help in rejecting sequences with insufficient
duration, as well as those that otherwise yield low confidence. For a confidence
measure, Maestro uses the gesture instance’s posterior probability, which is com-
puted using the entire gesture spotting network to approximate the observation
prior P (O1:T ) using the Forward-Algorithm described in Section 6.2.1.
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Next Slide

Previous Slide

Zoom Out

"Silence"

Catch-all

Figure 7.2: Maestro’s gesture spotting network. Again, the black dots represent
non-emitting states. The background process is factored into a “silence” and ergodic
catch-all model. These models are connected in parallel to the gesture models.
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Chapter 8

Gesture Spotting Results

This chapter presents results from a standardized user study which directly com-
pares Maestro’s original ad-hoc recognizer to the HMM-based approach described
in the previous two chapters. In addition to presenting quantitative results for both
recognizers, this study shows that both recognizers have very similar recognition
characteristics. As such, we conclude that the lessons learned when using the ad-
hoc recognizer (including the results of the deployment study described in Chapter
5) are equally applicable to a system which uses our DHMM-based gesture recog-
nizer. Going forward, we recommend the DHMM-based approach since it is more
generalizable, it follows a more principled approach, and it is more representative
of the state-of-the-art in this field.

8.1 Training the gesture models and initial posi-

tive results

Chapter 6 described the 4-state left-right hidden Markov models that are used to
model each of Maestro’s gestures. In order to train these DHMMs, a considerable
amount of data was required. The training data included approximately 100 iso-
lated examples of each of the following 11 gestures (as depicted in figures 4.1 and
4.2 of Chapter 4):

next slide, previous slide, undo, scroll down, scroll up, open carousel,
close carousel, zoom in, zoom out, expand bullet and collapse bullet

In the case of context-sensitive gestures, such as expand, collapse, and zoom-in,
training was conducted by randomly relocating the targets after each gesture per-
formance. This avoids learning a model that is specific to a single location or slide
layout.

Each of the gesture training examples was performed by one individual (the
author of this document), and gestures were isolated by hand.
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Next 87 4
Previous 100
Undo 1 104
Scroll Up 2 99
Scroll Down 4 91
Open Carousel 101
Zoom In 105
Expand 105
Collapse 105
Zoom Out 106
Close Carousel 100

Table 8.1: Aggregate confusion matrix, C = [cij], resulting from the five-fold cross
validation of the DHMM-based isolated gesture recognizer. Entry cij indicates the
frequency with which gesture Gi was recognized as gesture Gj.

Having acquired approximately 100 examples of each gesture, model parameters
were learned using the Baum-Welch reestimation procedure described in Chapter
6. For each gesture, five different models were learned (by randomizing initial
conditions), and the one with the highest likelihood of generating the training data
was selected. An initial inspection of these models reveals that the reestimation
procedure seems to have well-captured the essence of each gesture. Several of these
DHMMs are depicted graphically in figures 8.1 - 8.3.

In addition to examining the newly learned gesture models, we performed an
initial test to verify the potential of the DHMM-based approach. Since the training
data represents isolated gestures, it can be used to evaluate the performance of the
DHMMs in an isolated gesture recognition task (Section 6.3). Of course, one cannot
both train and evaluate the models using a common data set – instead, a five-fold
cross validation procedure was used. When using five-fold cross validation, the
training data for each gesture was partitioned into 5 sets of approximately equal
cardinality. This was followed by 5 separate experiments. In each experiment,
four sets were used for training, and the fifth was retained for the evaluation.
These experiments revealed that between 98% and 99% of the isolated gestures
were recognized correctly across each of the five folds. An aggregate of the confusion
matrices for isolated recognition is presented in table 8.1. These positive results
suggest that the models are able to accurately discriminate Maestro’s gestures from
one another.
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s1 s2 s3 s4 F

θ(R)

Z(R)

θ(B)

Z(B)

σ

Figure 8.1: Visualization of the “scroll up” gesture’s DHMM. In this gesture, the
red glove moves up while the blue glove remains stationary. Both gloves start
together, in the center section of Maestro’s staging area.

In this figure, each cell represents a possible value for the discrete turning
angles (Θ(R) and Θ(B)), zones (Z(R) and Z(B)), and spatial relation (σ) features,
as described in figures 6.3a and 6.3b of Chapter 6. The intensity of the shading
of each cell represents the marginal probability of observing the value for the
corresponding feature (e.g., P [Θ(R) = x|Q = si], where x is the value and si is the
state). For example, upward motion of the red glove has high marginal probability
for the first 3 states; but, in the last state, the red glove is most likely at rest.
Similarly, the spatial relation feature (which points from the blue glove towards
the red glove) indicates that the red glove starts near the blue glove, and remains
directly above the blue glove for the duration of the gesture.
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Figure 8.2: Visualization of the “zoom in” gesture’s DHMM. In this gesture, the
red glove and blue glove move apart vertically. The hands start together, inside
the bounds of the image being zoomed. See figure 8.1’s caption for a detailed
explanation of this figure.
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Figure 8.3: Visualization of the “undo” gesture’s DHMM. In this gesture, the red
glove moves first to the right and then to the left, starting in and returning to
the lower section of Maestro’s staging area. See figure 8.1’s caption for a detailed
explanation of this figure.
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8.2 Results for gesture spotting

Motivated by the initial positive results of the isolated gesture recognition task, a
set of formal experiments was conducted to compare the error rates of the DHMM-
based gesture spotting approach to those of the ad-hoc recognizer. In order to
obtain more general results, five individuals were recruited to participate in this
study. Participants included 3 males and 2 females, aged 20-35 years old. Three of
the individuals had previously participated in trials during the iterative design of
Maestro, while two users had never used Maestro before. All five individuals are
considered inexperienced users. Additionally, the experiment was repeated by an
expert user (the author of this document).

In each of the six trials, users were asked to repeatedly perform each gesture
until Maestro’s original recognizer spotted at least 10 instances of the gesture. Each
trial used a standardized set of presentation slides providing context against which
the gestures were performed. While the standardized slides resembled a typical
presentation, the slides were static and did not respond to gestures. Instead, an
audible tone was used to provided real-time feedback to the participants; the tone
sounded whenever the ad-hoc recognizer spotted a gesture.

In each experiment, the participant’s hand trajectories were logged, and the
trials were video recorded. Once the data was gathered, the logs could be replayed
to simulate input. This, along with the static standardized slides, allowed a common
data set to be tested against both the ad-hoc and HMM-based recognizers. The
videos were then manually coded to establish a ground truth for the frequency with
which each gesture was actually performed.

Confusion matrices for the participants are presented in tables 8.2a and 8.2b.
Since gesture spotting must also be able to rule out non-gestures, the confusion
matrix has an extra row and column compared to the confusion matrix for isolated
gesture recognition (table 8.1). Cases where a gesture was confused for a non-
gesture (the right-most column) correspond to false-negatives. Cases where non-
gestures were mistaken for gestures (the bottom row) are false-positives.

For participants, the ad-hoc recognizer correctly spotted 86.4% of the gesture
performances, and less than 1% of all detections were false-positives. This can
be compared to the HMM-based approach, where the recognizer correctly spotted
84.6% of the gesture performances, and 3% of all detections were false positives.
While the HMM-based approach scores slightly lower than the ad-hoc recognizer
in both cases, the results differ only by a few percentage points. Both recognizers
appear to error on the side of caution, having a strong bias toward false-negatives
over false-positives. As noted in Chapter 5, this behavior is desirable in presen-
tation systems since false-positives are more detrimental to the presentation. It
should also be noted that these error rates compare favorably with those of similar
systems. For example, Charade achieved an accuracy ranging from 72% to 84%
for inexperienced users when using a modified Rubine recognizer [2].

The recognition results of the participants can be compared to the results of an

90



N
ex

t

P
re

v
io

u
s

U
n
d
o

S
cr

ol
l

U
p

S
cr

ol
l

D
ow

n

O
p

en
C

ar
ou

se
l

Z
o
om

In

E
x
p
an

d

C
ol

la
p
se

Z
o
om

O
u
t

C
lo

se
C

ar
ou

se
l

N
on

-g
es

tu
re

Next 50 2
Previous 2 55 4
Undo 53 9
Scroll Up 6 45 6
Scroll Down 2 47 1
Open Carousel 48 12
Zoom In 49 5
Expand 51 1 16
Collapse 38 15
Zoom Out 50 4
Close Carousel 53 1
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(a) Confusion matrix for spotting participant gestures, when using the ad-hoc rec-
ognizer.
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Previous 49 12
Undo 57 5
Scroll Up 39 18
Scroll Down 44 6
Open Carousel 60
Zoom In 41 13
Expand 49 1 18
Collapse 38 15
Zoom Out 53 1
Close Carousel 54
Non-gesture 1 2 4 1 1 7 –

(b) Confusion matrix for spotting participant gestures, when using the HMM-based
recognizer.

Table 8.2: Confusion matrices for spotting participant gestures.
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expert user. Results for the expert user are presented in tables 8.3a and 8.3b. For
the expert user, the ad-hoc recognizer correctly spotted 96.4% of the gesture per-
formances, and there were no false positives. Conversely, the HMM-based approach
correctly spotted 95.7% of the gesture performances, with 4% of all detections re-
sulting from false positives. Again, these results compare favorably with those of
similar systems; Charade achieved an accuracy ranging from 90% to 98% for ex-
pert users [2], while FreeHandPresent [28] achieved an accuracy of 93% using a
DHMM-based approach that is very similar to the approach used by Maestro (the
main differences being Maestro’s factored observation model, and Maestro’s explicit
modeling of “silence” – i.e., cases where neither hand is detected).

For the expert user, all false-positives occurred when performing the “collapse
bullet” gesture. This same gesture also resulted in a high number of false-positives
when the HMM-based approach was evaluated with non-expert participant data.
In both cases, there were also a large number of false-negatives for this gesture.
This suggests a problem with the “collapse bullet” gesture or its model, rather
than a problem with the underlying gesture spotting approach.

8.3 Conclusion and future work

The ad-hoc and HMM-based recognizers are sufficiently similar so as to suggest
that the lessons learned when using the ad-hoc recognizer (including the results of
the deployment study described in Chapter 5) are equally applicable to a system
using the HMM-based approach. Going forward, we recommend the HMM-based
approach which is more generalizable, follows a more principled approach, and is
arguably more representative of the state-of-the-art in this area. While the ad-
hoc recognizer functions quite well in practice, it is not easily generalized to cope
with new gestures or environments. In fact, adding new gestures (or improving
the recognition of existing gestures) requires new heuristics to be developed on a
case-by-case basis. When using an approach based on hidden Markov models, these
same tasks can be achieved by simply collecting new training data and learning new
models.

While the two gesture recognizers perform quite well, they have slightly differ-
ent recognition characteristics. As noted earlier, false-positives are more likely to
occur when using the HMM-based recognizer. It is possible that a better back-
ground model, or a different confidence measure, may reduce the occurrence of
false-positives. More work must be done to explore these possibilities.

Additionally, more work must be done to determine if recognition results can
be improved by using different model topologies for gestures. For example, some
gestures may be better modeled using a 3-state HMM rather than a 4-state HMM.
Alternatively, it is worth exploring model topologies in which one or more states can
be skipped (i.e., increasing the ∆ in the constrained jump topology, as described in
Section 6.3). It is also worthwhile considering moving from an HMM with discrete
observation vectors to one combining both discrete and continuous values.
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(a) Confusion matrix for spotting expert gestures, when using the ad-hoc recognizer.
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(b) Confusion matrix for spotting expert gestures, when using the HMM-based
recognizer.

Table 8.3: Confusion matrices for spotting expert gestures.
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Finally, we note that Maestro’s “expert user”, discussed above, is the same
individual who generated most of the training data for learning the gesture models.
It is likely that the high accuracy with which his gestures were spotted are the
result of both experience, and the fact that various aspects of the models may be
tailored to his unique motion characteristics. In the future, it will be important
to separate these factors to determine if there is any advantage to personalizing
the gesture models. This personalization has been suggested by others [61] and
has proven to be an effective means to increasing accuracy in speech recognition
applications.
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Chapter 9

Conclusion

Gesture-based interaction has long been seen as a natural means of input for elec-
tronic presentation systems. However, gesture-based presentation systems have not
been evaluated in real-world contexts. To address this issue, we designed and eval-
uated Maestro, a gesture-based presentation system which uses computer vision for
gesture recognition. This work was presented in two parts. The first part served
to motivate gesture-based presentation control, and to discuss the details of Mae-
stro’s design and evaluation. Importantly, the design was motivated by a small
observational study of people giving talks, and the evaluation was conducted in a
real-world setting over a two-week period.

Part II of this document presented a sophisticated gesture recognizer, which
was based on discrete hidden Markov models. In comparison to Maestro’s original
ad-hoc recognizer, this new recognizer is more generalizable in the sense that new
gestures can easily be added by training new models. Moreover, the HMM-based
recognizer is more representative of the state-of-the-art in this field. Crucially, user
trials have shown both recognizers have similar recognition characteristics. As such,
we believe the conclusions presented in part I are equally applicable when using the
more sophisticated recognizer described in part II. We now review both parts in
turn, and then list some possibilities for future research.

9.1 Part I: Design and evaluation of Maestro

The first five chapters of this document presented the design and evaluation of Mae-
stro, along with an overview of related work. In comparison to other gesture-based
presentation systems in the literature, Maestro is distinguished by the following:

1. Maestro’s design is directly influenced by an observational study examining
the practices of presenters when giving talks. This study indicated that ges-
tures are typically directed at slide content, and are primarily used to more
effectively communicate the presentation material.
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2. Maestro makes use of two classes of gestures, those that navigate the presen-
tation (e.g., moving between slides), and those that operate on slide content
(e.g., highlighting content when pointed to). Past research has not distin-
guished between these two classes of gestures, and has instead focused almost
exclusively on using gestures for presentation navigation. Our findings suggest
content-centric gestures are the most important in such a system.

3. Maestro was evaluated in a classroom setting, where it was used for a period
of two weeks. To the best of our knowledge, this study constitutes the first
real-world, long-term evaluation of such a system.

Additionally, the deployment study suggests that gesture-based control can no-
ticeably alter the dynamics of a presentation in ways that are not always desirable.
In particular, sensing needs can reduce the mobility of the presenter leading to the
“anchoring problem”. Additionally, since gestures are performed in close proximity
to the screen, the projected content may not fit within the presenter’s field of view.
This can lead to awkward breaks in the presentation where the presenter must step
away from the screen to view each slide in its entirety. Finally, the interface can
introduce “no-fly zones”: regions in which the presenter may not enter without
the risk of accidentally issuing a command, or otherwise distracting the audience.
These findings were unexpected, have not been previously reported in the literature,
and help set an agenda for future research in this area.

9.2 Part II: Gesture recognition with discrete hid-

den Markov models

In support of rapid prototyping, Maestro’s original gesture recognizer was heuristic
in nature, and relied on manually tuned gesture templates. Part II of this document
presented a more sophisticated gesture recognizer based on discrete hidden Markov
models. Importantly, Maestro’s DHMMs make use of a factored observation model
that allows modeling of both one and two-handed gestures, and which directly
models missing observations. The factored observation model greatly reduces the
number of parameters that would otherwise need to be learned to model Maestro’s
gestures.

Upon training the DHMM-based recognizer, both this recognizer and Maestro’s
original ad-hoc recognizer were evaluated in a controlled laboratory setting. In
this experiment, five participants and one expert user each performed at least ten
examples of every gesture. Both the ad-hoc and DHMM-based recognizers scored
favorably in comparison to similar systems in the literature. Importantly, both
recognizers also exhibited very similar recognition characteristics. The ad-hoc rec-
ognizer accurately spotted 86% of gestures for new users, increasing to 96% for the
expert user; while the DHMM-based recognizer accurately spotted 85% of gestures

96



for new users, again increasing to 96% for the expert. This suggests that the con-
clusions drawn from Maestro’s deployment study continue to be applicable when
using more sophisticated gesture recognizers.

9.3 Future work

While the development of the DHMM-based gesture recognizer already represents
an evolution of Maestro’s original design, there are many opportunities for contin-
ued research in this project. As with many other aspects of this document, these
research possibilities relate to human-computer interaction, computer vision, as
well as gesture recognition. We discuss these possibilities next.

First and foremost, our work on Maestro strongly suggests exploring multimodal
interactions with presentations. Specifically, we recommend that rich interactions
be achieved via gestures, and efficient navigation of the presentation be attained
through input devices such as remote controls.

Our work also suggests exploring new forms of interaction that may enhance
one’s ability to emphasize or better communicate the content within projected
slides. As was noted earlier, in Part I, one possibility is to explore gesture-based
interactions with mathematical plots and simulations. Some of these possibilities
have already been partially explored by Douglas Zongker and others [70], but past
research has not explored the use of gesture-based interaction in this context.

There also exists the possibility of automating Maestro’s initial calibration pro-
cedure, which is required prior to interacting with the projected slideshow. While
Maestro’s current calibration process simply involves specifying the 4 corners of the
display, it nonetheless is an additional step that is not required by PowerPoint or
similar presentation systems. Work by Sukthankar et al. [55] demonstrates how cal-
ibration can be achieved automatically by projecting calibration patterns onto the
screen, and using corner detection techniques from the computer vision community
to recover the necessary calibration parameters.

Along these lines, it may also be possible to develop hand tracking techniques
that do not rely on the colored gloves. Work by Maria Hilario et al. demonstrates
how knowledge of the projected background, and a model for the camera’s color
response, can allow detection of objects that occlude the display [14]. While this
approach provides only the presenter’s contour, this extra information may allow
the hands to be detected and tracked more easily.

Finally, we would also like to develop more accurate background models that
better account for the presenter’s hand motion when he or she is not performing
a gesture. An improved background model may improve the recognition results of
the DHMM-based approach, and is a compelling possibility for more theoretical
research in this area.
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