PICL: Portable In-Circuit Learner

Adam Fourney, Michael Terry
Cheriton School of Computer Science
University of Waterloo
{afourney, mterry} @cs.uwaterloo.ca

ABSTRACT

This paper introduces the PICL, the portable in-circuit
learner. The PICL explores the possibility of providing stan-
dalone, low-cost, programming-by-demonstration machine
learning capabilities to circuit prototyping. To train the PICL,
users attach a sensor to the PICL, demonstrate example in-
put, then specify the desired output (expressed as a voltage)
for the given input. The current version of the PICL provides
two learning modes, binary classification and linear regres-
sion. To streamline training and also make it possible to train
on highly transient signals (such as those produced by a cam-
era flash or a hand clap), the PICL includes a number of input
inferencing techniques. These techniques make it possible
for the PICL to learn with as few as one example. The PICL’s
behavioural repertoire can be expanded by means of various
output adapters, which serve to transform the output in useful
ways when prototyping. Collectively, the PICL’s capabilities
allow users of systems such as the Arduino or littleBits elec-
tronics kit to quickly add basic sensor-based behaviour, with
little or no programming required.

Author Keywords
Toolkits; Machine Learning; Circuits; Tangible User
Interfaces

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
input devices and strategies; interaction styles; prototyping

General Terms
Design, Human Factors

INTRODUCTION

The move from desktop to ubiquitous computing has led to
the development of a variety of hardware-based toolkits to aid
with prototyping and design. These toolkits range from those
that depend on computers for both programming and deploy-
ment (e.g., Phidgets [10] and d.tools [14]), to those that are
completely standalone, such as littleBits [4, 5], a recent hard-
ware platform with individual pieces that snap together. Each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

UIST’ 12, October 7-10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

(a) The PICL prototype in a simple circuit involving a bat-
tery, a photocell, and an LED output.

("sv 5V)
O O
Learning 1 2
Mode Set Input Set Output Vour

On/Off

[]
On/off O
° MOde,,F?F%?,,F’N’?Y,,, Se

Line Fit O ° s()
Mark Begin/End B ave
O of Example Input LmMeoslet @
Cancel/Undo GND 5V

[(Hold for Reset) [m]
GND GND

\%

SIGNAL

(b) A rendering of the PICL’s user interface. The inter-
face consists of five momentary buttons, one rotary dial,
one switch, and five small LEDs for feedback. Users at-
tach sensors to the Vgenar inputs on the left side. Sensors
outputting a voltage connect directly to the top Vsignar in-
put port; resistive-based sensors are attached to Vsignar and
the input directly below it, which attaches internally to a
voltage divider.

Figure 1. The PICL prototype.

of these toolkits lowers the barrier to prototyping hardware-
based interfaces by reducing the time and effort required to
work with physical sensors, actuators, and electrical circuits
in general.

In recent years, interest in machine learning toolkits has also
increased. Some of these toolkits are designed to be relatively
independent of problem domains (e.g., Weka [11]), while oth-
ers, such as Exemplar [13] or Crayons [7], are intended to aid
in building user interfaces that respond to real-world sensor
data. A hallmark of these latter toolkits is that they enable
a form of programming-by-demonstration [18] by virtue of
allowing the designer to demonstrate desired input.

Inspired by this past research, we envision a more complete
integration of these two research trajectories whereby ma-

chine learning capabilities are reified in portable, standalone
learning hardware that can integrate with circuits, hardware
toolkits, and other computational devices. These learning
units should allow designers and developers to attach arbi-
trary sensors, then teach the learning hardware how to re-
spond when given specific types of input. Ideally, we would
like to achieve this goal without requiring a computer for ei-
ther programming or deployment.

As a step towards this larger vision, we introduce the PICL,
the Portable In-Circuit Learner (Figure 1(a)). The PICL is an
in-circuit learning unit that accepts arbitrary analog sensors
(resistive-based or voltage-based) as input. The sensed input
is then mapped by the PICL to an output voltage via a learned
function. End-users train the PICL by providing examples of
input and the desired output for each input example.

Our current PICL can learn either a linear classifier or a linear
regression model. It outputs OV or 5V for the linear classifier,
and a voltage in the range of 0-5V for the linear regression
learning mode. These learning algorithms continuously sam-
ple input at a rate of 1200Hz on the 16 MHz Atmel processor
used in our PICL, yielding a 0.83ms response time. These
two learning modes, operating at this response rate, enable
one to prototype a wide variety of systems without any pro-
gramming.

To simplify training, the PICL includes a number of input
inferencing techniques. These input inferencing techniques
reduce the number of examples the user must provide when
training the PICL, and also infer which parts of an input sig-
nal are likely of interest. As an example, consider a scenario
whereby the user wishes to turn on a light by clapping their
hands. The PICL’s linear classifier can be used in this case,
but it must be trained on the short-lived, larger amplitudes of
the clap’s sound wave so it does not accidentally activate at
normal, ambient sound levels. To aid with this type of train-
ing, the PICL tracks the initial, minimum, and maximum sen-
sor values when it is training. It then chooses the value that
leads to the best separation of the training data. This mode of
input inferencing is useful when training on transient events,
like the flash of a camera, or the previous hand clapping ex-
ample. It also allows the PICL to be trained without requiring
a separate graphical user interface to specify which parts of
the signal are of interest.

To further facilitate rapid prototyping, the PICL also includes
a number of output adapters that transform the output volt-
age in useful ways. These output adapters are separate com-
ponents that connect to the PICL. For example, we provide a
“toggle” output adapter that acts as a basic flip-flop. The out-
put adapters build on, and extend, previous work exploring
programming with tangible eBlocks [19].

The specific contributions of this work are as follows:

e An in-circuit, standalone machine learning hardware com-
ponent with two learning modes, linear classification and
linear regression.

e A programming-by-demonstration style of training that in-
cludes a set of input inferencing techniques to minimize
training time, and to support training on transient events.

e A series of output adapters that transform the output in
meaningful ways, to address a number of common situa-
tions and needs when building systems.

o A simplified interface for attaching sensors. Specifically,
the PICL includes a built-in voltage divider to allow direct
connection of resistive sensors. Active, voltage-based
sensors can also be directly attached.

PICLs are aimed at designers, developers, and hobbyists who
use platforms such as Arduino or littleBits to develop sensor-
based systems. The PICL reduces and simplifies the code
necessary to react to sensed input, while eliminating the need
to measure sensor values, then write code that reacts to those
sensor values. Its use of machine learning algorithms also
provides a measure of error tolerance, allowing noisy or im-
perfect training data. Finally, for users of high-level systems
like littleBits, PICLs provide a way to add intelligence to a
snap-together system, without requiring programming.

In the rest of this paper, we review related work, then de-
scribe the design and implementation of the PICL. We present
a set of sample applications, and conclude with a discussion
of limitations and possibilities for future work.

RELATED WORK

The PICL draws upon prior research in hardware toolKits;
programmable, tangible interfaces; and machine learning
toolkits.

Numerous hardware toolkits have been produced to enable
rapid prototyping of systems that can sense and interact with
the physical world. Phidgets [10] encapsulate sensors and
actuators into USB-modules that can be accessed via a rich
programming API. In a similar vein, iStuff [3] and the Calder
Toolkit [17] attach microcontrollers to physical devices, such
as switches and potentiometers, to provide a higher-level in-
terface to these low-level components. d.tools [14] takes an
analogous approach, providing a standardized interface for
low-level components to attach to a computer. It also in-
cludes a software environment to further facilitate program-
ming with the physical sensors. The recent .NET Gadgeteer
system [26] provides a similar modular system of sensors,
actuators, and a mainboard, and can be programmed using
the .NET language. Like these hardware toolkits, the PICL
shares the goal of lowering the barrier to designing interac-
tive systems with real-world sensors and actuators, but differs
from these previous projects by not requiring a computer for
programming or deployment.

A number of embedded systems have been developed that re-
quire a computer for programming, but which can otherwise
be deployed as self-standing units. Smart-Its [9] are a general
purpose development platform for creating context-aware ap-
plications using embedded systems. Smart-Its consist of a

core board and sensor board, allowing flexibility in the sen-
sors used. The Arduino [1] provides a basic platform for pro-
totyping embedded systems, though it requires basic knowl-
edge of electronics to attach sensors and actuators. Like these
systems, the PICL is a self-standing system that can accept
arbitrary sensor inputs. However, it is not intended to be a
general-purpose system like these other platforms. Instead,
its sole function is to learn input-output mappings.

The recent littleBits architecture [4, 5] allows various sen-
sors, controls, and actuators to be chained together, with sen-
sors and controls directly affecting actuators that come after
them in the chain. This architecture enables those with no
prior electronic experience to snap together basic circuits, but
at present, it offers nothing more than AND and OR gates
for adding computation to the circuits. The PICL provides a
natural way to add intelligence to the littleBits system. We
describe this possibility more fully later, and in the accompa-
nying video figure.

The Buttercup system [21] is an embedded system that maps
sensor input to effector output via an input-output curve.
Users configure the Buttercup on a PC, where they can man-
ually adjust the input-output curve or choose from predefined
curves. The PICL performs a similar input-output mapping,
but in contrast to Buttercup, PICL users create this mapping
by providing example input and the corresponding desired
output. The examples are then interpreted in the context of
the chosen learning mode (i.e., the linear classifier or linear
regression mode).

Research in tangible computing [16] investigates how com-
putation can be embedded in physical objects. In the spirit of
tangible user interfaces, a number of research projects have
explored how physical objects can be used for programming.
For example, AlgoBlocks [24] creates a “tangible program-
ming language” with each block representing a programming
construct in a Logo-like language. McNerey’s Tangible Pro-
gramming Bricks [20] provide similar capabilities, allowing
individuals to compose basic programs by snapping Lego
blocks together, with each Lego block representing a specific
operation. While the PICL does not support the traditional
form of programming represented by these systems, it does
nonetheless allow users to specify desired behavior through
demonstration.

More similar to the PICL, eBlocks [19] provide sensor-based
blocks that transform their input to logic levels. The output of
these blocks can then be connected to logic blocks to perform
Boolean logic. Also included in this system are state-based
blocks, such as flip-flops (called a “Toggle” block in the sys-
tem), a “Yes Prolonger” block (which extends the emission
of a “yes”/true-valued input), a latch block, and a pulse gen-
erator block. The PICL’s output adapters are analogous to
these state blocks, and serve similar functions when design-
ing circuits. We replicate and extend these blocks with our
output adapters, adding line-select and PWM output adapters
(described later).

Transitioning to the realm of machine learning toolkits, Hart-
mann et al.’s Exemplar system [13] provides a bridge between

sensor-based toolkits and software that recognizes patterns in
sensor data. Exemplar offers a standardized input interface
for sensors that allows a designer to illustrate desired sensor
input, choose the portion of the sensor signal that is of in-
terest, then train to recognize that type of input. Its use of
dynamic time warping enables users to provide a single input
to train on. Software can then be notified via an event when
that sensor input is later seen. Our PICL shares a similar goal
of allowing users to demonstrate desired input with as few
examples as possible. However, training the PICL is done en-
tirely with the device itself and does not require a standalone
graphical user interface. Furthermore, it possesses a number
of input inferencing techniques to lessen training time and
effort. Another important difference between these systems
is that the PICL does not consider a signal over time, while
Exemplar does.

Other toolkits have been developed to lower the barrier to uti-
lizing machine learning techniques, especially by those with
little experience developing or using machine learning algo-
rithms. Weka [11] is a general-purpose, low-level machine
learning toolkit, while Gestalt [22] provides a number of fa-
cilities to assist in developing robust classifiers. While these
toolkits help bootstrap the creation of systems with a machine
learning component, they are aimed primarily at software de-
velopers.

Crayons [7] and CueFlik [8] are both examples of interactive
machine learning systems, where end-users interactively la-
bel data to train a computer vision classifier. MAGIC [2] sim-
ilarly allows end-users to create a gesture classifier by provid-
ing examples. PICL shares a similar vision to these systems
by allowing users to explicitly provide example input and the
desired output for that input.

Finally, there have been numerous efforts to embed
machine learning capabilities directly in chips such as
field-programmable gate arrays (FPGAs) (e.g., [27, 12]). We
are inspired by these efforts, but are focused on how to make
such functionality accessible to the end-user.

DESIGN DESIDERATA

In designing the PICL, our aim was to construct a learn-
ing unit that could enable designers and developers to inter-
face arbitrary sensors with simple electronic circuits using a
programming-by-demonstration metaphor. Our specific goals
are captured in the following design desiderata:

e A Standalone Unit: The PICL should be a standalone
unit that does not require a computer for training or
deployment.

e Sensor Agnostic: The system should be sensor agnostic,
and users should not need to know exactly how a given
sensor responds to its environment. For example, the
PICL should not require users to differentiate between
positive temperature coefficient (PTC) thermistors, whose
resistance increases with temperature, and negative tem-
perature coefficient (NTC) thermistors, whose resistance
decreases under the same conditions.

e Programming-by-Demonstration: Users should not
need to know anything about machine learning, but rather
simply feel like they can demonstrate example input and
output, correcting the unit as necessary.

e Simple and Streamlined Training: The PICL should
require as few training examples as possible, preferably a
single training example.

e Minimalist UI: The PICL should strike a balance between
a minimalist design and a rich, verbose interface that
enables easy learning and debugging of the system. The
interface should also allow for rapid specification of train-
ing data. The desire for a minimalist design is motivated
on two grounds. First, a minimalist design can help keep
costs down with respect to the required hardware. Second,
most of the time, the unit will be responding to input,
rather than being trained by the user.

e Minimal Knowledge of Electronics: Users should be able
to operate a PICL and derive value from it without requir-
ing extensive knowledge of electronics.

Collectively, these goals and constraints are intended to ex-
plore a specific area of the design space for hardware-based
machine learning, namely, low-cost, standalone learning units
that are programmed by demonstration alone.

PICL'S USER INTERFACE

The PICL must support two primary tasks: capturing exam-
ple input and labeling that input. In support of these tasks, its
user interface (Figure 1(b)) consists of five momentary but-
tons, a rotary dial, a mode switch, and LEDs to signal state.
The mode switch allows the user to choose the learning mode
(i.e., linear classifier mode or linear regression mode). The
choice of learning mode also affects which subset of the in-
terface is active, as described below. This design was a result
of an iterative design process that explored dozens of inter-
face possibilities. It represents a balance between a sparse
interface with overloaded controls, and an interface requiring
more expensive components (such as graphical displays).

Linear Classification

When in linear classification mode (referred to as “On/Off
Mode” in the PICL’s interface), users train the PICL by pro-
viding example inputs and labeling those inputs with a de-
sired output of either “ON/5V” or “OFF/0V”. The training
process proceeds as follows:

1. The user presses the button labeled “Mark Begin/End of
Example Input” to begin recording the training example.
The LED next to this button begins flashing to indicate the
system is monitoring the input.

2. The user demonstrates the example input by performing
some action that is captured by the attached sensor. For
example, the user might cover a photocell with their hand,
or clap near a microphone attached to the PICL.

3. The user terminates capture of the input by pressing the
“Mark Begin/End of Example Input” button for a second
time. The LEDs near the “ON/5V” and “OFF/0V” buttons
begin to flash to signal to the user that they must specify
the desired output for the captured input.

4. The user presses either the “ON/5V” or “OFF/0V” button
depending on the desired output. After choosing an out-
put, the PICL begins outputting the corresponding electri-
cal voltage. This allows the user to verify that she has cho-
sen the correct output given her needs. Upon pressing a
button, the LED near the chosen value remains on, and the
LED near the “Save” button begins flashing to signal the
next step of the process.

5. Finally, the user presses the “Save” button. The training
example is recorded and the PICL’s internal models are re-
trained. The PICL resumes mapping input voltages to out-
put voltages using the newly trained model.

Linear Regression

The PICL’s second mode of operation, linear regression (re-
ferred to as “Line Fit Mode” in the PICL’s interface), maps
input to output through a linear model learned from training
data. In this mode of operation, the PICL’s output is analog,
and varies between OV and 5V. Training in this mode is iden-
tical to the previous mode, except that the end-user specifies
the desired outputs using the rotary dial.

Cancel, Undo, and Reset

The PICL has the ability to cancel or undo input via the “Can-
cel/Undo (Hold for Reset)” button. Pressing this button dur-
ing any stage of the training processes just described (prior to
pressing the “Save” button) discards that training example. If
the PICL is not currently being trained, pressing this button
undoes the prior training example. This allows users to easily
recover from erroneous input. We currently support one level
of undo, in part because errors should be readily noticed. As
the button’s name suggests, holding it down resets the device
to its initial state.

Interface Shortcuts and One-Touch Training

To expedite training, the PICL provides a number of train-
ing shortcuts. For example, after first pressing the “Mark Be-
gin/End of Example Input” button to start capturing a training
example, the user can immediately press either the “ON/5V”
or “OFF/0V” buttons, or turn the rotary dial (depending on
the learning mode), to simultaneously end capture of the in-
put example and to specify the desired output.

The PICL also supports one-touch training, which, when cou-
pled with the input inferencing methods described below,
greatly simplifies training of the system. To perform one-
touch training, the user can simply press the “ON/5V” or
“OFF/0V” button to capture the current input and associate
it with the chosen output. That is, the user does not need to
explicitly press the “Mark Begin/End of Example Input” or
“Save” buttons — they can simply press the desired output but-
ton if the sensor is currently reading the desired input. In the

linear regression learning mode, users can similarly begin ro-
tating the output knob to set the desired output given the cur-
rent input. However, the user must explicitly save the training
example by pressing the “Save” button, since the PICL cannot
infer when the user is done adjusting the output value.

LEARNING MODES AND IMPLEMENTATIONS

We now discuss how the PICL’s learning modes are imple-
mented internally. We also describe how the PICL can infer
intended training values when capturing input, and how it can
learn a linear classifier from a single training example.

Linear Classifier Mode

When operating in linear classifier mode, the PICL examines
the input signal voltage and determines if the output voltage
should be fully on (5V) or fully orr (0V), depending on which
side of a learned threshold the input falls. This threshold,
Vinresn» 18 learned from the (z,y) pairs making up the train-
ing examples. Here, x can be any input voltage in the range
0-5V, and y is selected to be either OV or 5V. When there
exists a Vigesy that perfectly separates on examples from orr
examples, the data is said to be linearly separable, and finding
a satisfactory Viygesy 1S trivial. However, in many real-world
scenarios, the sensor data is noisy, or otherwise fails to be
linearly separable.

In order to better cope with noisy input, and to learn a robust
threshold, the PICL employs a one dimensional soft-margin
support vector machine (SVM) [6]. While support vector ma-
chines are beyond the scope of this paper, it suffices to say
that in the one dimensional case, training involves selecting
an optimal pair of on and orr examples, xoy and Zq, between
which the threshold is placed (i.e., Viggesu = (Ton + Torr)/2)-
These optimal examples are known as the “support”, and
are chosen so as to maximize their mutual distance from the
threshold (i.e., the margins), while minimizing the error con-
tributed by training examples that fall on the wrong side of
their respective support. This tradeoff is represented in equa-
tions 1 and 2.

Cost— — >4 ¢ > H(wy) D)

2
Ton — T,
(ON OFF) (:E,’L/) € Training

Where C'is a constant which determines how forgiving the
support vector machine is of errors, and H is the hinge loss
function defined as follows:

max(0, — Toy) if Toy < Tope and y = 5V
max(0, Tox —) if Toy > Topr and y = 5V
max(O, Top — &) if Toy < Tome and y = OV
max(O, xr — :Z:OFF) if Loy = Topr and y = OV

2

H(z,y) =

Linear Regression Mode

When operating in linear regression mode, the PICL employs
a simple linear model to map the input signal voltage to an
output voltage. Again, the training examples take the form
of (x,y) pairs. This time, both the x and the y values can be
any voltage in the range 0-5V. From these training examples,
standard simple linear regression [15] is used to learn a model

that maps inputs x to outputs f(z) via the equation f(x) =
« + PBz. Here o and (3 are the usual regression parameters
defined as follows:

8= rxy% @ = 23—556

Where z and y are the sample means of the x, and, respec-
tively, y components of the training examples. Likewise, s,
and s, are the sample standard deviations of the x and y com-
ponents. Finally, r, is the corresponding correlation coeffi-
cient.

When parameters are chosen as described above, the model
is said to minimize the sum of squared errors (SSE):

SSE = Z

(2,y) ETraining

(y— f(z))? 3)

Input Inferencing

In both the linear classifier and the linear regression modes,
users provide training data to the PICL by pressing a but-
ton to start and end a recording session. During the time be-
tween button presses, the PICL may sample the input many
thousands of times. A decision must therefore be made to
determine which sample best represents the user’s intended
training example.

In many cases, the user can demonstrate the desired input the
entire time the PICL is capturing the input example. For in-
stance, if the user wishes to capture a sensor value for a pho-
tocell that is in a shadow, it may be relatively easy to sustain
the shadow during the time the input is being captured. In
such situations, while there will undoubtedly be small varia-
tions in the input signal, these variations are minor and will
not significantly affect training the model.

In other cases, the desired input is transient and difficult for
the user to sustain or isolate when providing example input.
For example, the user may wish the PICL to trigger its out-
put when the user makes a loud sound (like hands clapping)
or when it detects the flash of a camera. In these situations,
the desired input value may be close to the minimum or max-
imum values observed while training. While we could in-
troduce new capture modes to the PICL to allow the user to
specify the type of values of interest (e.g., the minimum or
maximum sensed values), doing so requires the user to un-
derstand how the sensor varies with different input. It would
also introduce additional interface requirements. To avoid
these requirements, we developed a means to infer the desired
training value.

When training, the PICL employs a strategy we call input
inferencing. Specifically, for each input example, the PICL
learns three training examples. Each example has a distinct
x value, but an example set shares a common y value (the
desired output specified by the user). These three training
examples are as follows:

o (Tmar, Y), where yma. denotes the input at the moment
the input capture started

e (yi, Y), where xyy denotes the minimum input value
observed during the input capture

o (Tyax, V), Where zy,x denotes the maximum input value
observed during the input capture

After each input example, the three training examples are
added to three corresponding training sets Tiyma, Ly, and
Tuax. If the PICL is in linear classifier mode, then the three
training sets are used to train three distinct support vector ma-
chines: SVMuuias SVMyw and SVM,,.x. The SVM that min-
imizes the cost represented by equation 1 is then promoted to
the final model, while the remaining two SVMs are discarded.
This process is similar to feature selection, and selects the in-
put interpretation that yields an SVM with the best margin
width-to-error tradeoff (which best separates the classes in
the training data).

If the PICL is in linear regression mode, a similar process is
undertaken, but with equation 3 in place of equation 1. Intu-
itively, this has the effect of selecting the training set exhibit-
ing the strongest linear relationship between observed input
and desired output. In the special case of only two training ex-
amples, the linear model is fit without residuals, and equation
3 evaluates to zero for all three models. These ties are broken
by selecting the training set that covers the largest range of
input values, relying on the assumption that the user is likely
to demonstrate extremes when building regression models.

Baseline input and training with a single example

As a final convenience to users, the PICL records a baseline
sensor measurement when the device is first powered on, or
when it is reset by the user. This baseline measurement is
used as a “stand in” for missing training examples when in
linear classifier mode. For example, suppose the user resets
the device, then provides a training example that is labeled as
on. After receiving this single training example, the PICL will
assume the baseline measurement represents the orr state,
and trains the model accordingly. If the user then provides
an orr example, this inferred baseline example is discarded,
and the actual user example is used instead. The CueFlik
system [8] employs a similar strategy when the end-user has
provided only positive examples to the system. In our expe-
rience, this simple heuristic often matches the way we think
about training the PICL: we first demonstrate exceptional in-
put, then demonstrate more common input. With this mode
of input inferencing, it is often possible to train the PICL to
classify input with only a single training example and a single
button press.

ELECTRICAL AND HARDWARE INTERFACE

The PICL’s electrical interface is inspired by the littleBits
electrical interface, which provides power rails and an input
signal that is transformed to an output signal.

Input electrical interface
At the most basic level, the PICL requires a single input,
Vaionar- Vaionar takes an input voltage in the range 0-5V, which

is output by an active sensor (e.g., an ultrasonic rangefinder
or amplified microphone). Internally, Vjoua 1s measured by a
10-bit analog to digital converter.

The PICL also includes a second input: Divider. When Divider
is unconnected (floating), Vienay 18 treated as described above.
However, if Divider is connected to Vs through a resistive
sensor (e.g., CdS photocell, thermistor, etc.), the PICL em-
ploys an internal voltage divider. The voltage divider enables
end-users to directly attach resistive sensors without needing
to construct their own voltage divider. While a voltage divider
is a relatively straightforward circuit, resistive sensors are so
common that we felt it worthwhile to include this circuitry in
the PICL itself. This built-in divider also lowers the barrier
for end-users new to electrical circuits.

Output electrical interface

The PICL provides a single output, Viyr. Vour provides an
output voltage in the range 0-5V, which corresponds to the
evaluation performed on Vg, by the internal logic. The Vi,
signal is analog, and is generated by an 8-bit digital to analog
converter.

Peripheral Compatibility

The PICL’s inputs and outputs range from 0V to 5V, making it
compatible with a wide range of logic families and microcon-
trollers (e.g., Arduino [1], PICAXE [23], etc.). Furthermore,
with the addition of littleBits’ physical magnetic connectors,
the PICL can derive power from a littleBits chain, utilize the
littleBits sensors as input, and interface with littleBits output
modules. Thus, with no other changes beyond the addition
of the littleBits physical connectors, the PICL can add basic
computational capabilities to that system.

OUTPUT ADAPTERS

In its standard configuration, the Vg, signal generated by the
PICL is useful for many applications, such as triggering an
external camera flash when detecting a loud noise. Occa-
sionally, more complex output behaviours are desired. To
facilitate the construction of more complex responses to in-
put, we designed a set of output adapters. As mentioned in
Related Work, these output adapters build on and extend the
state blocks found in the eBlocks system [19]. They are in-
tended to attach directly to the output line of the PICL.

Adapters for Binary Output

When the PICL is operating in linear classification mode, its
output is either OV or 5V. In many cases, it is useful to con-
dition this output in some fashion. For example, the input
may be extremely transient and rapidly vary (e.g., when hands
clap), causing the output to change rapidly. To address these,
and similar circumstances, we designed the following binary
output adapters:

e Single Pulse: In its baseline state, the single pulse output
adapter emits a steady OV. This output adapter monitors
the PICL’s Vg, for instances where the signal transitions
from orr (OV) to on (5V). Upon observing this rising
edge, the adapter raises its output voltage to 5V for a
user-configurable period of time (specified by adjusting a

dial on the face of the output adapter). This output adapter
is useful for extending what would otherwise be very brief
high-output signals, and makes interfacing with existing
hardware (such as remote controls) more reliable.

e Toggle: The toggle output adapter is a basic flip-flop: a
rising edge in the PICL’s Vi, signal causes the output
adapter to flip states (if the adapter is outputting 0V, a
rising edge on its input line causes it to output 5V, and vice
versa).

e Latch: The latch output adapter changes its output state
from OV to SV upon observing a rising edge in the PICL’s
Vour signal. Unlike the toggle and pulse adapters, the latch
adapter remains in this high state until manually reset by
the user. This reset is achieved by pressing a small button
on the face of the adapter.

e Line Select: Unlike the aforementioned adapters, the line
select adapter has two output lines. The first line simply
echoes the PICL’s Vi, signal. The second line, Viur,
transmits the negated signal. This output adapter allows
the user to create a system that selects between two circuits.

Adapters for Analog Output

In addition to the binary output adapters, we have developed
two output adapters that work with the PICL’s linear regres-
sion mode.

e Oscillator: As the name suggests, the oscillator output
adapter outputs a clock signal, whose frequency varies as
a function of the PICL’s V,; signal. Specifically, the clock
rate is mapped to voltage, with higher voltages yielding
higher frequencies. When connected to a speaker, the
oscillations are audible, and the result is a tone generator
with output tones controlled by the PICL.

e Pulse-width modulation (PWM): The PWM output
adapter converts the PICL’s V,,; signal to a pulse-width
modulated signal. This signal quickly switches on and
off, but the percentage of time spent in each state (duty
cycle) varies with Vo,r. PWM control signals are useful
in that they can be used to efficiently control high-current
devices. For example, this output adapter allows the
PICL to control the speed of a motor, or the brightness of
high-power lighting.

Benefits of Output Adapters

In designing the PICL, one of the questions we faced was
whether we should include these types of output conditioning
on the PICL itself. In the end, we decided to separate this
functionality out of the PICL for a number reasons.

First, doing so maintains a minimalist design of the PICL,
whose default input and output electrical interfaces are use-
ful in many situations. Second, some forms of output condi-
tioning require setting additional parameters. By offloading

(a) The PICL attached to an external camera flash via a
transistor. A photocell also connected to the PICL triggers
the flash in response to other bright lights.

B

(b) The external flash is triggered by the prior flash of a
photographer’s camera. Here the external flash is used to
defensively overexpose photographs (inset).

Figure 2. Implementation of capture-resistant environments.

output conditioning to separate modules, output adapters can
provide interfaces that are specifically designed for manipu-
lating the relevant parameters. This enables very targeted in-
terfaces, while avoiding a cluttered, overloaded interface on
the PICL itself. Finally, externalizing the output adapters en-
ables adapters to be chained together to compose more com-
plex behaviours. For example, a Toggle output adapter and
Line Select output adapter could be chained together to cre-
ate a system that switches between two circuits every time the
user claps their hands.

SAMPLE APPLICATIONS

Having described the PICL and its output adapters, we now
present various sample applications that can be easily devel-
oped with our system. All of these examples can be viewed
in the accompanying video figure.

Capture-Resistant Environments

Truong et al. [25] describe how spaces can be augmented with
a system of directed, pulsing lights to prevent the recording of
images by unauthorized camera equipment. With the PICL,
we can recreate this effect by detecting camera flashes, and
quickly responding by activating a defensive flash to over-
expose the recorded image (Figure 2(b)). To construct this
system, we attach a passive CdS photocell to the PICL and
record instances of camera flashes from various locations in
the room. We also record several examples of ambient light-
ing conditions. The PICL’s fast sampling rate and input infer-
encing features enable the PICL to develop an SVM model
that accurately detects the camera flashes. The PICL’s output

can then be used to interface with a simple switching tran-
sistor, which can be used to trigger external camera flashes
(Figure 2(a)).

Laser Tripwire Alarm

The PICL can also be configured to create a simple laser trip-
wire alarm. Using the same photocell as in the previous ex-
ample, the PICL can be trained to output a low value when the
cell is illuminated by a laser beam, and to output a high value
when the beam is broken. By attaching a piezoelectric buzzer,
the system can be made to output a loud beeping alert when-
ever the alarm is tripped. If the buzzer is connected through
the Latch output adapter, the buzzer will continue to sound
even after the laser illumination has been reestablished. To
stop the alarm, the Latch adapter needs to be manually reset
by pressing a reset button.

Clap Activated Outlet

As a final example, the PICL paired with a remote controlled
wall outlet can be used to construct a sound-activated appli-
ance. We accomplish this by training the PICL to output a
high signal whenever a clap is detected by a microphone. The
PICL’s output can then be used to activate a mechanical relay,
which closes a connection across the remote’s “On” button.
In this example, the Single Pulse adapter must be used to pro-
long the short-lived output signal so that the relay has time
to close, and so that the remote detects the input as a proper
button press (after debouncing). Now, when the microphone
detects a clap, the remote outlet is activated.

In all of these examples, the user can construct a useful circuit
with no programming required, and minimal interfacing hard-
ware. For example, a transistor or relay is all that is typically
needed to turn an external circuit on or off. In comparison,
constructing these applications using a platform like the Ar-
duino would require the user to first take measurements, then
write code to trigger an output line when the desired event is
observed by the microcontroller.

DISCUSSION

As discussed above, the goal of the PICL is to explore the no-
tion of a low-cost, minimalist, standalone, programming-by-
demonstration hardware learning unit. As can be expected,
there are limitations associated with the imposition of such
severe design constraints. In this section, we discuss the con-
sequences of these design constraints and also outline possi-
bilities for future work.

Limited Interaction

Without an interactive graphical user interface, it potentially
can be challenging for the end-user to specify the particular
sensor values they wish to train on. For example, they may
wish to train on the maximum sensed value, rather than the
minimum. In our own uses of the PICL, we have found the
input inferencing to work well when inferring the intended
training values. However, there may be cases where partic-
ularly noisy or widely varying input may lead to the wrong
inferences being made. In these cases, the ability to directly
select values of interest could be useful (as in the Exemplar
system [13]).

Limited Feedback

The lack of a GUI can also make it more difficult to debug the
system as a whole. For example, if the system does not seem
to be training as expected, the end-user may wish to monitor
the current sensor values, the current output values, and the
current learned (internal) model. While both the input and
output values can be directly measured using tools such as
multimeters and oscilloscopes, there is currently no way for
the end-user to view the internal model of the PICL. In our
own experiences, we have not encountered situations where
we were unable to train the PICL, but end-users who are less
familiar with sensors and machine learning may run into sit-
uations in which they would benefit from a visualization of
these values.

Changes in Environmental Context

One particular way in which the PICL may work in unex-
pected ways for those new to machine learning is when its
surrounding context changes. For example, if the PICL is
connected to a light sensor and trained indoors, the result-
ing model will likely fail when taken outdoors. Again, richer
feedback could help end-users debug such scenarios and un-
derstand why the system does not work as expected.

For this particular problem, we also developed and tested the
possibility of allowing the user to shift the learned model.
However, we found the resultant interface too clunky. In-
stead, we opted for a more basic conceptual model of simply
retraining the PICL.

Learning temporal patterns

At present, the PICL samples input at a rate of approximately
1200 Hz, and evaluates each sample independently. For ex-
ample, it trains on inputs such as camera flashes by sensing
bright lights, and hand claps by sensing loud noises. While
the amplitude of these signals is a strong indication of each
event, other key features of these signals are overlooked: their
brevity, spectral components, etc. In the future, we look for-
ward to incorporating more temporal features and learning
modes into the PICL. Specifically, we are interested in be-
ing able to train on features in the frequency domain, as well
as the possibility of using dynamic time warping to train on
specific patterns. Dynamic time warping is advantageous be-
cause it can function with a single training example (e.g.,
[13]), which is very much in the spirit of the simple training
desiderata expressed in the PICL’s design.

Input Adapters

As an alternative to enabling temporal models of input, it may
be possible to achieve a subset of this functionality through
pre-processing of the signal. In this vein, we envision con-
structing a set of input adapters that are similar in spirit to out-
put adapters, but which filter or transform sensor input. As a
simple example, one input adapter may implement a bandpass
filter to allow the PICL to detect sounds only within a given
frequency range. Similarly, a beat-counter input adapter may
allow the PICL to measure tones, or to handle sensors that
communicate readings by varying the frequency of an output
signal (e.g., some humidity sensors).

Alternatively, it would be useful to develop input adapters
that communicate with sensors using common serial inter-
faces, such as the I2C serial bus. Such an input adapter would
greatly expand interoperability with complex sensors (e.g.,
accelerometers), but would likely require the input adapters
to be preloaded with the communication protocols employed
by common I2C sensors.

Learning with parallel inputs

The PICL’s hardware interface accepts a single input signal,
Viionar, from which a single feature (discretized voltage) is
used to build the PICL’s internal models. In the future, we
would like to explore the possibility of allowing multiple in-
put signals to train on. For example, one sensor may measure
barometric pressures, and another humidity, in order to pre-
dict the likelihood of rain. By expanding the feature space,
we expand the complexity of the PICL’s internal models, and
thus increase the need for training data. As such, there are
challenges in implementing such models in inexpensive mi-
crocontroller hardware. There is also a challenge in maintain-
ing a simplified, low-cost interface to the system.

Cooperating PICLs

As an alternative to accepting multiple parallel inputs, it may
be desirable to configure many individual PICLs to work to-
gether. In such a scenario, each PICL would monitor a single
input or feature. The devices would then communicate with
one another to map the ensemble of inputs into a single out-
put signal. Such ensembles are trivial to create by intercon-
necting current PICLs with standard logic gates or voltage
comparators, which is essentially the strategy employed by
Exemplar [13]. However, we envision that cooperation could
occur earlier in the evaluation process to better model the full
input space. For example, one could assemble a group of PI-
CLs to implement a single naive Bayes classifier. In this sce-
nario, each PICL would be independently trained, and would
monitor a single feature. The ensemble of PICLs would then
communicate with one another to jointly infer the class of an
unknown set of sensor readings. Once trained, the individual
PICLs could then be swapped in and out, allowing a tangible
means of selecting and composing features.

Miniaturization

The current PICL prototype, measuring 16 X8 x5 cm, is much
larger than it needs to be. This size is mostly a result of our
use of an Arduino Mega 2560 microcontroller for prototyp-
ing, which itself measures 10 x5 x 1.5 cm. The enclosure also
contains a prototyping breadboard and digital-to-analog con-
verter chip, but much of the PICL’s interior is empty space.
We have begun the process of miniaturization, and have used
surface mount versions of the various electronics to reduce
the size of the core assembly (excluding controls) to approxi-
mately 7 x 2 x 2.5 cm, for a PICL with only a linear classifier.
Miniaturizing the interface will require some simplification of
the controls, and remains future work.

CONCLUSION
In this paper, we have presented the PICL, an electronic com-
ponent that supports basic, in-circuit machine learning. Users

wire it into a circuit, then train it by demonstrating exam-
ple input and desired output. Importantly, the PICL has a
minimalist interface, can perform well with minimal train-
ing (in many cases, with a single training example triggered
with a single button press), is able to infer desired input when
recording transient signals, and requires very little knowledge
of electronics or machine learning. With the PICL, users can
quickly develop interesting applications by simply demon-
strating input and specifying the desired output.

This paper also outlined how various simple output adapters
can be utilized to expand the behaviour repertoire of the
PICL. For example, the Latch or Toggle adapter enables users
to develop circuits that maintain state after receiving input,
while the Single Pulse output adapter allows users to interface
with devices sporting mechanical momentary buttons. Fi-
nally, the PICL’s electrical interface is compatible with most
5V electronics, including the very popular Arduino micro-
controller and the littleBits electronic construction kit. When
integrated with such systems, users can quickly interface sen-
sors and transform their input to useful output values, with no
programming required.

ACKNOWLEDGEMENTS

We would like to thank Krzysztof Pietroszek for his help in
preparing the video figure accompanying this paper. This
work was supported in part by an NSERC Discovery Grant
and an NSERC Alexander Graham Bell Canada Graduate
Scholarship.

REFERENCES

1. Arduino Team. Arduino - homepage.
http://www.arduino.cc/, Retrieved April 2012.

2. Ashbrook, D., and Starner, T. Magic: a motion gesture
design tool. In Proc CHI ’10, ACM (New York, NY, USA,
2010), 2159-2168.

3. Ballagas, R., Ringel, M., Stone, M., and Borchers, J. istuff:
a physical user interface toolkit for ubiquitous computing
environments. In Proc CHI 03, ACM (New York, NY,
USA, 2003), 537-544.

4. Bdeir, A. Electronics as material: littlebits. In Proc TEI ’09,
ACM (New York, NY, USA, 2009), 397-400.

5. Bdeir, A., and Rothman, P. Electronics as material:
littlebits. In Proc TEI ’12, ACM (New York, NY, USA,
2012), 371-374.

6. Cortes, C., and Vapnik, V. Support-vector networks.
Machine Learning 20 (1995), 273-297.
10.1007/BF00994018.

7. Fails, J., and Olsen, D. A design tool for camera-based
interaction. In Proc CHI '03, ACM (New York, NY, USA,
2003), 449-456.

8. Fogarty, J., Tan, D., Kapoor, A., and Winder, S. Cueflik:
interactive concept learning in image search. In Proc CHI
'08, ACM (New York, NY, USA, 2008), 29-38.

http://www.arduino.cc/

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Gellersen, H., Kortuem, G., Schmidt, A., and Beigl, M.

Physical prototyping with smart-its. [EEE Pervasive
Computing 3, 3 (July 2004), 74-82.

Greenberg, S., and Fitchett, C. Phidgets: easy development
of physical interfaces through physical widgets. In Proc
UIST 01, ACM (New York, NY, USA, 2001), 209-218.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. The weka data mining software: an
update. SIGKDD Explor. Newsl. 11,1 (Nov. 2009), 10-18.

Hammerstrom, D. A VLSI architecture for
high-performance, low-cost, on-chip learning. International
Joint Conference on Neural Networks 2 (1990), 537-544.

Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S. R.
Authoring sensor-based interactions by demonstration with

direct manipulation and pattern recognition. In Proc CHI
'07, ACM (New York, NY, USA, 2007), 145-154.

Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla, L.,
Burr, B., Robinson-Mosher, A., and Gee, J. Reflective
physical prototyping through integrated design, test, and
analysis. In Proc UIST 06, ACM (New York, NY, USA,
2006), 299-308.

Hogg, R., and Tanis, E. Probability and Statistical
Inference. Prentice Hall, 2001, ch. 7, 402-416.

Ishii, H., and Ullmer, B. Tangible bits: towards seamless
interfaces between people, bits and atoms. In Proc CHI ’97,
ACM (New York, NY, USA, 1997), 234-241.

Lee, J. C., Avrahami, D., Hudson, S. E., Forlizzi, J., Dietz,
P. H., and Leigh, D. The calder toolkit: wired and wireless
components for rapidly prototyping interactive devices. In
Proc DIS °04, ACM (New York, NY, USA, 2004), 167-175.

Lieberman, H. Your Wish is My Command: Programming
By Example, 1st edition ed. Morgan Kaufmann, 2001.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Lysecky, S., and Vahid, F. Enabling nonexpert construction
of basic sensor-based systems. ACM Trans. Comput.-Hum.
Interact. 16, 1 (Apr. 2009), 1:1-1:28.

McNerney, T. S. From turtles to tangible programming
bricks: explorations in physical language design. Personal
Ubiquitous Comput. 8, 5 (Sept. 2004), 326-337.

Merlo, M., and Bachman, M. A rapid prototyping tool for
interactive device development. In Proc HCII ’11,
Springer-Verlag (Berlin, Heidelberg, 2011), 107-113.

Patel, K., Bancroft, N., Drucker, S. M., Fogarty, J., Ko,
A.J., and Landay, J. Gestalt: integrated support for
implementation and analysis in machine learning. In Proc
UIST ’10, ACM (New York, NY, USA, 2010), 37-46.

Revolution Education Ltd. PICAXE.
http://www.picaxe.com/, Retrieved April 2012.

Suzuki, H., and Kato, H. Interaction-level support for
collaborative learning: Algoblock — an open programming
language. In Proc CSCL ’95, L. Erlbaum Associates Inc.
(Hillsdale, NJ, USA, 1995), 349-355.

Truong, K., Patel, S., Summet, J., and Abowd, G.
Preventing Camera Recording by Designing a
Capture-Resistant Environment, vol. 3660 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2005,
903-903.

Villar, N., Scott, J., Hodges, S., Hammil, K., and Miller, C.
.NET gadgeteer: A platform for custom devices. In
Proceedings of Pervasive 2012, LNCS, Springer-Verlag
(2012), 216-233.

Zhu, J., and Sutton, P. FPGA implementations of neural
networks - a survey of a decade of progress. In Proc FPL
’03, Springer-Verlag (2003), 1062—1066.

http://www.picaxe.com/

	INTRODUCTION
	RELATED WORK
	DESIGN DESIDERATA
	PICL'S USER INTERFACE
	Linear Classification
	Linear Regression
	Cancel, Undo, and Reset
	Interface Shortcuts and One-Touch Training

	LEARNING MODES AND IMPLEMENTATIONS
	Linear Classifier Mode
	Linear Regression Mode
	Input Inferencing
	Baseline input and training with a single example

	ELECTRICAL AND HARDWARE INTERFACE
	Input electrical interface
	Output electrical interface
	Peripheral Compatibility

	OUTPUT ADAPTERS
	Adapters for Binary Output
	Adapters for Analog Output
	Benefits of Output Adapters

	SAMPLE APPLICATIONS
	Capture-Resistant Environments
	Laser Tripwire Alarm
	Clap Activated Outlet

	DISCUSSION
	Limited Interaction
	Limited Feedback
	Changes in Environmental Context
	Learning temporal patterns
	Input Adapters
	Learning with parallel inputs
	Cooperating PICLs
	Miniaturization

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

